The purposes of this study are to explore the contamination levels of perfluorinated and polyfluoroalkyl substances (PFASs) in breast milk and assess their exposure risk to infants. Based on data from a birth cohort study conducted in Yingcheng, Hubei Province, from 2018 to 2021, the contents of 23 types of PFASs in the breast milk of 324 pregnant women were determined using isotope dilution-high performance liquid chromatography-tandem mass spectrometry. Multiple linear regression was then performed to analyze the effects of various demographic characteristics and eating habits on the concentration of PFASs in breast milk.
View Article and Find Full Text PDF-methylcytosine (4mC) is a natural DNA modification occurring in thermophiles and plays important roles in restriction-modification (R-M) systems in bacterial genomes. However, the precise location and sequence context of 4mC in the whole genome are limited. In this study, we developed an APOBEC3A-mediated deamination sequencing (4mC-AMD-seq) method for genome-wide mapping of 4mC at single-base resolution.
View Article and Find Full Text PDFAim/objective: This study aimed to assess telehealth readiness among clinical nurses in China and explore the factors that affect their telehealth readiness and the relationships of telehealth readiness and telehealth practice-related variables.
Background: Telehealth is a new service model that uses information and communication technology to provide professional health care services for resource-poor areas. With the global spread of COVID-19, nurses urgently need to adapt and apply telehealth technology to replace conventional face-to-face treatment.
The discovery of dynamic and reversible modifications in RNA expands their functional repertoires. Now, RNA modifications have been viewed as new regulators involved in a variety of biological processes. Among these modifications, thiolation is one kind of special modification in RNA.
View Article and Find Full Text PDFThe discovery of dynamic and reversible modifications in messenger RNA (mRNA) is opening new directions in RNA modification-mediated regulation of biological processes. Methylation is the most prevalent modification occurring in mRNA and the methyl group is mainly decorated in the adenine, cytosine, and guanine base or in the 2'-hydroxyl group of ribose. However, methylation of the uracil base (5-methyluridine, mU) has not been discovered in mRNA of eukaryotes.
View Article and Find Full Text PDFRibonucleotide analogues and their related phosphorylated metabolites play critical roles in tumor metabolism. However, determination of the endogenous ribonucleotides from the complex biological matrix is still a challenge due to their high structural similarity and high polarity that will lead to the low retention and low detection sensitivities by liquid chromatogram mass spectrometry analysis. In this study, we developed the diazo reagent labeling strategy with mass spectrometry analysis for sensitive determination of ribonucleotides in the living organism.
View Article and Find Full Text PDFIn addition to DNA cytosine methylation (5-methyl-2'-deoxycytidine, m5dC), DNA adenine methylation (N6-methyl-2'-deoxyadenosine, m6dA) is another DNA modification that has been discovered in eukaryotes. Recent studies demonstrated that the content and distribution of m6dA in genomic DNA of vertebrates and mammals exhibit dynamic regulation, indicating m6dA may function as a potential epigenetic mark in DNA of eukaryotes besides m5dC. Whether m6dA undergoes the further oxidation in a similar way to m5dC remains elusive.
View Article and Find Full Text PDFToxic heavy metals have been considered to be harmful environmental contaminations. The molecular mechanisms of heavy-metals-induced cytotoxicity and carcinogenicity are still not well elucidated. Previous reports showed exposures to toxic heavy metals can cause a change of DNA cytosine methylation (5-methylcytosine, 5-mC).
View Article and Find Full Text PDF5-Methylcytosine (5-mC) is an important epigenetic mark that plays critical roles in a variety of cellular processes. To properly exert physiological functions, the distribution of 5-mC needs to be tightly controlled in both DNA and RNA. In addition to methyltransferase-mediated DNA and RNA methylation, premethylated nucleotides can be potentially incorporated into DNA and RNA during replication and transcription.
View Article and Find Full Text PDF2-hydroxyglutarate (2HG) is a potent competitor of α-ketoglutarate (α-KG) and can inhibit multiple α-KG dependent dioxygenases that function on the epigenetic modifications. The accumulation of 2HG contributes to elevated risk of malignant tumors. 2HG carries an asymmetric carbon atom in its carbon backbone and differentiation between D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG) is crucially important for accurate diagnosis of 2HG related diseases.
View Article and Find Full Text PDF