Publications by authors named "Cheng Jiang Gao"

Background: Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder and involves increased apoptosis of platelets. Autophagy is an essential process for platelets to maintain their life and physiological functions. However, the role of autophagy in ITP platelets was previously unclear.

View Article and Find Full Text PDF

Immune thrombocytopaenia (ITP) is the most common autoimmune bleeding disorder, where platelets are destroyed by auto-antibodies and/or cell-mediated mechanisms. To understand the pathogenesis of ITP and explore novel therapeutics, three types of animal models have been used: passive ITP, secondary ITP and platelet-induced ITP. However, the first two are not ideal for chronic ITP pathophysiology where both T cell and B cell play important roles in platelet destruction.

View Article and Find Full Text PDF

Acquired aplastic anemia is an idiopathic paradigm of human bone marrow failure syndrome, which involves active destruction of hematopoietic stem cells and progenitors by cytotoxic T cells in the bone marrow. Aberrant expression of microRNAs in T cells has been shown to lead to development of certain autoimmune diseases. In the present study, we performed a microarray analysis of miRNA expression in bone marrow CD3+ T cells from patients with aplastic anemia and healthy controls.

View Article and Find Full Text PDF

The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes.

View Article and Find Full Text PDF

T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been reported to participate in the pathogenesis of inflammatory diseases. However, whether Tim-3 is involved in hepatitis B virus (HBV) infection remains unknown. Here, we studied the expression and function of Tim-3 in a hydrodynamics-based mouse model of HBV infection.

View Article and Find Full Text PDF