Publications by authors named "Cheng Hsuan Li"

Controlling hypertension has become an important issue in the elderly population in whom neurological comorbidities are highly prevalent. Most of the large-scale trials focusing on hypertension management in older populations have excluded patients with comorbid neurological disorders. However, this population requires special considerations, as the benefits of antihypertensive agents are mostly uncertain and there is a higher risk of adverse events.

View Article and Find Full Text PDF

Polymer-based nanocatalysts have been extensively utilized in advanced drug delivery due to their versatility and high reactivity. Incorporating bioorthogonal transition metal catalysts (TMCs) into polymers generates bioorthogonal nanocatalysts capable of producing therapeutic agents , minimizing off-target effects. The supramolecular interactions within the polymer matrix, including hydrophobic interactions and aromatic stacking, play a crucial role in catalytic properties.

View Article and Find Full Text PDF

The antibacterial efficacy and specificity of lytic bacteriophages (phages) make them promising therapeutics for treatment of multidrug-resistant bacterial infections. Restricted penetration of phages through the protective matrix of biofilms, however, may limit their efficacy against biofilm infections. Here, engineered polymers were used to generate noncovalent phage-polymer nanoassemblies (PPNs) that penetrate bacterial biofilms and kill resident bacteria.

View Article and Find Full Text PDF

Background: Quantitative susceptibility mapping (QSM) is a post-processing technique that creates brain susceptibility maps reflecting metal burden through tissue magnetic susceptibility. We assessed topographic differences in magnetic susceptibility between participants with and without Wilson's disease (WD), correlating these findings with clinical severity, brain volume, and biofluid copper and iron indices.

Methods: A total of 43 patients with WD and 20 unaffected controls, were recruited.

View Article and Find Full Text PDF

Biofilms, intricate microbial communities entrenched in extracellular polymeric substance (EPS) matrices, pose formidable challenges in infectious disease treatment, especially in the context of interkingdom biofilms prevalent in the oral environment. This study investigates the potential of carvacrol-loaded biodegradable nanoemulsions (NEs) with systematically varied surface charges─cationic guanidinium (GMT-NE) and anionic carboxylate (CMT-NE). Zeta potentials of +25 mV (GMT-NE) and -33 mV (CMT-NE) underscore successful nanoemulsion fabrication (∼250 nm).

View Article and Find Full Text PDF

Intracellular pathogenic bacteria use immune cells as hosts for bacterial replication and reinfection, leading to challenging systemic infections including peritonitis. The spread of multidrug-resistant (MDR) bacteria and the added barrier presented by host cell internalization limit the efficacy of standard antibiotic therapies for treating intracellular infections. We present a non-antibiotic strategy to treat intracellular infections.

View Article and Find Full Text PDF

Integration of antimicrobial polymeric nanoparticles into hydrogel materials presents a promising strategy to address multidrug-resistant biofilm infections. Here we report an injectable hydrogel loaded with engineered cationic antimicrobial polymeric nanoparticles (PNPs) for the effective topical treatment of severe wound biofilm infections. The PNPs demonstrated biofilm penetration and disruption, resulting in the eradication of resistant and persister cells that reside within the biofilm.

View Article and Find Full Text PDF

Lexical tones and emotions are conveyed by a similar set of acoustic parameters; therefore, listeners of tonal languages face the challenge of processing lexical tones and emotions in the acoustic signal concurrently. This study examined how emotions affect the acoustics and perception of Mandarin tones. In Experiment 1, Mandarin tones were produced by professional actors with angry, fear, happy, sad, and neutral tones of voice.

View Article and Find Full Text PDF

Cell surface glycans serve fundamental roles in many biological processes, including cell-cell interaction, pathogen infection, and cancer metastasis. Cancer cell surface have alternative glycosylation to healthy cells, making these changes useful hallmarks of cancer. However, the diversity of glycan structures makes glycosylation profiling very challenging, with glycan 'fingerprints' providing an important tool for assessing cell state.

View Article and Find Full Text PDF

Bioorthogonal catalysis mediated by transition metal catalysts (TMCs) presents a versatile tool for generation of diagnostic and therapeutic agents. The use of 'naked' TMCs in complex media faces numerous obstacles arising from catalyst deactivation and poor water solubility. The integration of TMCs into engineered inorganic scaffolds provides 'nanozymes' with enhanced water solubility and stability, offering potential applications in biomedicine.

View Article and Find Full Text PDF

Background: Cognitive impairment is a disabling non-motor symptom of Parkinson's disease (PD). It remains uncertain whether declines in specific cognitive domains relate to imaging or plasma biomarkers across the disease continuum.

Objective: We investigated whether neuroimaging and plasma biomarkers correlate with individual task-specific cognitive domain declines evidenced by computerized neuropsychological tests in PD patients.

View Article and Find Full Text PDF

Wound biofilm infections caused by multidrug-resistant (MDR) bacteria constitute a major threat to public health; acquired resistance combined with resistance associated with the biofilm phenotype makes combatting these infections challenging. Biodegradable polymeric nanoemulsions that encapsulate two hydrophobic antimicrobial agents (eugenol and triclosan) (TE-BNEs) as a strategy to combat chronic wound infections are reported here. The cationic nanoemulsions efficiently penetrate and accumulate in biofilms, synergistically eradicating MDR bacterial biofilms, including persister cells.

View Article and Find Full Text PDF

Retraction of 'Efficient wound healing using noble metal nanoclusters' by Kuo Li , 2021, , 6531-6537. DOI: 10.1039/D0NR07176E.

View Article and Find Full Text PDF

Bacterial wound infections are a threat to public health. Although antibiotics currently provide front-line treatments for bacterial infections, the development of drug resistance coupled with the defenses provided through biofilm formation render these infections difficult, if not impossible, to cure. Antimicrobials from natural resources provide unique antimicrobial mechanisms and are generally recognized as safe and sustainable.

View Article and Find Full Text PDF

Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species.

View Article and Find Full Text PDF

Infections caused by multidrug-resistant (MDR) bacteria present an emerging global health crisis, and the threat is intensified by the involvement of biofilms. Some biofilm infections involve more than one species; this can further challenge treatment using traditional antibiotics. Nanomaterials are being developed as alternative therapeutics to traditional antibiotics; here we report biodegradable polymer-stabilized oil-in-water nanosponges (BNS) and show their activity against dual-species bacterial biofilms.

View Article and Find Full Text PDF

The wound healing process involves multiple steps including hemostasis, inflammation, proliferation, and tissue remodeling. Nanomaterials have been employed externally for healing wounds. However, their use as systemic therapeutics has not been extensively explored.

View Article and Find Full Text PDF

Tau-specific positron emission topography (PET) imaging enables assessment of Alzheimer's disease (AD). We aimed to investigate its performance in combination with plasma tau levels in patients with non-AD tauopathy. A total of 47 participants were enrolled, including 10 healthy controls, 16 with tauopathy parkinsonism syndromes (9 with corticobasal syndrome [CBS], 7 with progressive supranuclear palsy [PSP]), 9 with frontotemporal dementia (FTD), 4 with AD, and 8 with Parkinson's disease (PD).

View Article and Find Full Text PDF

Prodrug strategies use chemical modifications to improve the pharmacokinetic properties and therefore therapeutic effects of parent drugs. Traditional prodrug approaches use endogenous enzymes for activation. Bioorthogonal catalysis uses processes that endogenous enzymes cannot access, providing a complementary strategy for prodrug uncaging.

View Article and Find Full Text PDF

Antibiotic-resistant bacterial infections arising from acquired resistance and/or through biofilm formation necessitate the development of innovative 'outside of the box' therapeutics. Nanomaterial-based therapies are promising tools to combat bacterial infections that are difficult to treat, featuring the capacity to evade existing mechanisms associated with acquired drug resistance. In addition, the unique size and physical properties of nanomaterials give them the capability to target biofilms, overcoming recalcitrant infections.

View Article and Find Full Text PDF

Bioorthogonal catalysis offers a unique strategy to modulate biological processes through the in situ generation of therapeutic agents. However, the direct application of bioorthogonal transition metal catalysts (TMCs) in complex media poses numerous challenges due to issues of limited biocompatibility, poor water solubility, and catalyst deactivation in biological environments. We report here the creation of catalytic "polyzymes", comprised of self-assembled polymer nanoparticles engineered to encapsulate lipophilic TMCs.

View Article and Find Full Text PDF

Introduction: Frontal variant of Alzheimer's disease (fvAD) is a rare nonamnestic syndrome of Alzheimer's disease (AD). Differentiating it from behavior variant of frontotemporal dementia (bvFTD), which has implications for treatment responses and prognosis, remains a clinical challenge.

Methods: Molecular neuroimaging and biofluid markers were performed for the index patient for accurate premortem diagnosis of fvAD.

View Article and Find Full Text PDF

Objective: To examine whether plasma neurofilament light chain (NfL) levels were associated with motor and cognitive progression in Parkinson disease (PD).

Methods: This prospective follow-up study enrolled 178 participants, including 116 with PD, 22 with multiple system atrophy (MSA), and 40 healthy controls. We measured plasma NfL levels with electrochemiluminescence immunoassay.

View Article and Find Full Text PDF

Biofilm infections are responsible for at least 65% of human bacterial infections. These biofilms are refractory to conventional antibiotics, leading to chronic infections and nonhealing wounds. Plant-derived antibiotics (phytochemicals) are promising alternative antimicrobial treatments featuring antimicrobial properties.

View Article and Find Full Text PDF

Infections caused by bacterial biofilms are challenging to diagnose because of the complexity of both the bacteria and the heterogeneous biofilm matrix. We report here a robust polymer-based sensor array that uses selective interactions between polymer sensor elements and the biofilm matrix to identify bacteria species. In this array, an appropriate choice of fluorophore enabled excimer formation and interpolymer FRET, generating six output channels from three polymers.

View Article and Find Full Text PDF