Cadmium (Cd) is one of the most harmful and widespread pollutants in agricultural soil, where it is readily taken up by plants and threatens human health through the food chain. Nitrification inhibitors (NIs) are usually used to reduce nitrogen (N) loss in soil and increase the nitrogen use efficiency of crops. However, information regarding the Cd transfer in soil and crops system with the application of urea combined with NIs is limited.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2022
In waterlogged paddy soils, cadmium (Cd) can be precipitated as cadmium sulfide (CdS) under reductive environment, thereby limiting the absorption of Cd by plants. Multiple environmental factors (such as water, pH, and Eh) played a role in the control of Cd mobility and bioavailability. In this study, we investigated the influence of the solar irradiation on the photodissolution of synthetic CdS-montmorillonite composites (CdS-M) in solution and the stability of Cd in natural soil.
View Article and Find Full Text PDFPhytoremediation potential of two oil crop rotations (oilseed sunflower-rape (O+Ra) and peanut-oilseed rape (P+Ra)) was compared with three conventional cropping patterns (rice-rape (R+Ra), rice-rice (R+R), single cropped rice (SR)) in experimental plots with cadmium (Cd)-contaminated soil. A new approach was used to evaluate phytoremediation potential based on the balance between annual input and output fluxes of Cd in farmland soil. In O+Ra and P+Ra rotations, 77.
View Article and Find Full Text PDF