Publications by authors named "Chenfeng He"

Introduction: Antibodies represent a specific class of proteins produced by the adaptive immune system in response to pathogens. Mining the information embedded in antibody amino acid sequences can benefit both antibody property prediction and novel therapeutic development. However, antibodies possess unique features that should be incorporated using specifically designed training methods, leaving room for improvement in pre-training models for antibody sequences.

View Article and Find Full Text PDF

Cytochrome P450 F3 (CYP4F3) is recognized as a disease-associated immune response initiator that is involved in the synthesis of cholesterol, steroids, and lipids. This study identified the upregulation of CYP4F3 expression in colorectal cancer (CRC) and its association with poor patient prognosis through a comparative analysis between CRC tumor tissues with normal tissues from public databases. The overexpression of CYP4F3 in CT26.

View Article and Find Full Text PDF
Article Synopsis
  • Chemotherapy drugs like doxorubicin and abemaciclib induce senescence in breast cancer cells, but how they affect pH levels in these cells is not well understood.
  • The protein ATP6AP2 is essential for keeping pH balanced in cells, and a decrease in this protein leads to abnormal pH levels that disrupt lysosomal function and change immune responses.
  • The study shows that ATP6AP2 influences pH regulation and is linked to changes in immune profiles when breast cancer cells undergo therapy-induced senescence, shedding light on the underlying mechanisms of cellular responses to cancer treatment.
View Article and Find Full Text PDF

Background: Genotypes are strongly associated with disease phenotypes, particularly in brain disorders. However, the molecular and cellular mechanisms behind this association remain elusive. With emerging multimodal data for these mechanisms, machine learning methods can be applied for phenotype prediction at different scales, but due to the black-box nature of machine learning, integrating these modalities and interpreting biological mechanisms can be challenging.

View Article and Find Full Text PDF

Our machine-learning framework, brain and organoid manifold alignment (BOMA), first performs a global alignment of developmental gene expression data between brains and organoids. It then applies manifold learning to locally refine the alignment, revealing conserved and specific developmental trajectories across brains and organoids. Using BOMA, we found that human cortical organoids better align with certain brain cortical regions than with other non-cortical regions, implying organoid-preserved developmental gene expression programs specific to brain regions.

View Article and Find Full Text PDF

Cancers induce the production of acute phase proteins such as serum amyloid alpha (SAA) in the liver and cause inflammation in various host organs. Despite the well-known coincidence of acute phase response and inflammation, the direct roles of SAA proteins in inflammation in the cancer context remains incompletely characterized, particularly . Here, we investigate the significance of SAA proteins in liver inflammation in the 4T1 murine breast cancer model.

View Article and Find Full Text PDF

The spatially organized gene expression program within the liver specifies hepatocyte functions according to their relative distances to the bloodstream (i.e., zonation), contributing to liver homeostasis.

View Article and Find Full Text PDF

Follicular-helper T cells (T) are an essential arm of the adaptive immune system. Although T were first discovered through their ability to contribute to antibody affinity maturation through co-stimulatory interactions with B cells, new light has been shed on their ability to remain a complex and functionally plastic cell type. Due to a lack sample availability, however, many studies have been limited to characterizing T in mice or non-canonical tissue types, such as peripheral blood.

View Article and Find Full Text PDF

Intellectual and Developmental Disabilities (IDDs), such as Down syndrome, Fragile X syndrome, Rett syndrome, and autism spectrum disorder, usually manifest at birth or early childhood. IDDs are characterized by significant impairment in intellectual and adaptive functioning, and both genetic and environmental factors underpin IDD biology. Molecular and genetic stratification of IDDs remain challenging mainly due to overlapping factors and comorbidity.

View Article and Find Full Text PDF

Although critical to T cell function, antigen specificity is often omitted in high-throughput multiomics-based T cell profiling due to technical challenges. We describe a high-dimensional, tetramer-associated T cell antigen receptor (TCR) sequencing (TetTCR-SeqHD) method to simultaneously profile cognate antigen specificities, TCR sequences, targeted gene expression and surface-protein expression from tens of thousands of single cells. Using human polyclonal CD8 T cells with known antigen specificity and TCR sequences, we demonstrate over 98% precision for detecting the correct antigen specificity.

View Article and Find Full Text PDF

The Ab response to HIV is of great interest, particularly in the context of a protective vaccine and broadly neutralizing Abs, but research is typically geared toward elite controllers because of their ability to successfully control the virus. In this study, we studied the evolution of the Ab repertoire over the first year of HIV infection in people classified as rapid progressors (RP) compared with typical progressors. HIV RPs are an important yet understudied group of HIV patients classified by a rapid decline in CD4 counts and accelerated development of AIDS.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are essential for the maintenance of gut homeostasis by suppressing conventional CD4 helper T cells (Tconvs) that are activated by microbial antigens. Although thymus is the major source of the peripheral Tregs, peripheral conversion from Tconvs to Tregs have also been shown to occur under various experimental conditions. It remains less clear about the frequency of lineage conversion from Tconvs to Tregs in naïve animals.

View Article and Find Full Text PDF

Cell DNA is continuously attacked by endogenous and exogenous agents, which causes DNA damage. During long-term evolution, complex defense systems for DNA damage repair are formed by cells to maintain genome stability. Defects in the DNA damage repair process may lead to various diseases, including tumors.

View Article and Find Full Text PDF

CXCR5 is a key marker of follicular helper T (T) cells. Using primary lymph nodes (LNs) from HIV-infected patients, we identified a population of CXCR5 CD4 T cells with T-cell-like features. This CXCR5 subset becomes expanded in severe HIV infection and is characterized by the upregulation of activation markers and high PD-1 and ICOS surface expression.

View Article and Find Full Text PDF

We present tetramer-associated T-cell receptor sequencing (TetTCR-seq) to link T cell receptor (TCR) sequences to their cognate antigens in single cells at high throughput. Binding is determined using a library of DNA-barcoded antigen tetramers that is rapidly generated by in vitro transcription and translation. We applied TetTCR-seq to identify patterns in TCR cross-reactivity with cancer neoantigens and to rapidly isolate neoantigen-specific TCRs with no cross-reactivity to the wild-type antigen.

View Article and Find Full Text PDF

Follicular helper CD4 T cells (T) play an integral role in promoting B cell differentiation and affinity maturation. Whereas T cell frequencies are increased in lymph nodes (LNs) from individuals infected with HIV, humoral immunity remains impaired during chronic HIV infection. Whether HIV inhibits T responses in LNs remains unclear.

View Article and Find Full Text PDF

Unique molecular identifiers (MIDs) have been demonstrated to effectively improve immune repertoire sequencing (IR-seq) accuracy, especially to identify somatic hypermutations in antibody repertoire sequencing. However, evaluating the sensitivity to detect rare T cells and the degree of clonal expansion in IR-seq has been difficult due to the lack of knowledge of T cell receptor (TCR) RNA molecule copy number and a generalized approach to estimate T cell clone size from TCR RNA molecule quantification. This limited the application of TCR repertoire sequencing (TCR-seq) in clinical settings, such as detecting minimal residual disease in lymphoid malignancies after treatment, evaluating effectiveness of vaccination and assessing degree of infection.

View Article and Find Full Text PDF

Advancements in high-throughput sequencing and molecular identifier-based error correction have opened the door to antibody repertoire sequencing with single mutation precision, increasing both the breadth and depth of immune response characterization. However, improvements in sequencing technology cannot resolve one key aspect of antibody repertoire sequencing accuracy: the possibility of undocumented novel germline alleles. Somatic hypermutation (SHM) calling requires a reference germline sequence, and the antibody variable region gene alleles collected by the IMGT database, although large in number, are not comprehensive.

View Article and Find Full Text PDF

Accurately measuring antibody repertoire sequence composition in a small amount of blood is challenging yet important for understanding repertoire responses to infection and vaccination. We develop molecular identifier clustering-based immune repertoire sequencing (MIDCIRS) and use it to study age-related antibody repertoire development and diversification before and during acute malaria in infants (< 12 months old) and toddlers (12-47 months old) with 4-8 ml of blood. Here, we show this accurate and high-coverage repertoire-sequencing method can use as few as 1000 naive B cells.

View Article and Find Full Text PDF

The discovery of naturally occurring T cell receptors (TCRs) that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC) has previously been correlated with the activation and responsiveness of CD8 T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands.

View Article and Find Full Text PDF

Plasmodium falciparum malaria is a deadly infectious disease in which Abs play a critical role in naturally acquired immunity. However, the specificity and nature of Abs elicited in response to malaria are only partially understood. Autoreactivity and polyreactivity are common features of Ab responses in several infections and were suggested to contribute to effective pathogen-specific Ab responses.

View Article and Find Full Text PDF

T cells recognize and kill a myriad of pathogen-infected or cancer cells using a diverse set of T cell receptors (TCRs). The affinity of TCR to cognate antigen is of high interest in adoptive T cell transfer immunotherapy and antigen-specific T cell repertoire immune profiling because it is widely known to correlate with downstream T cell responses. We introduce the in situ TCR affinity and sequence test (iTAST) for simultaneous measurement of TCR affinity and sequence from single primary CD8(+) T cells in human blood.

View Article and Find Full Text PDF

The sorption of water and methanol droplets on Teflon films, as well as on various representative classes of hydrocarbon-based proton exchange membranes (PEMs) was investigated using contact angle measurement (drop shape method) during wetting under ambient open-air conditions. Teflon films exhibited constant hydrophobic surfaces when contacted with water, but a significant sorption of methanol. The PEMs showed slow sorption of water, and a significant sorption of methanol.

View Article and Find Full Text PDF

It has been shown that genome spatial structures largely affect both genome activity and DNA function. Knowing this, many researchers are currently attempting to accurately model genome structures. Despite these increased efforts there still exists a shortage of tools dedicated to visualizing the genome.

View Article and Find Full Text PDF