We present an improved inverse-design approach for automatically identifying molecular (or other) systems with optimal values for prechosen properties. The new approach uses SMILES (simplified molecular input line entry system) to describe molecular structures efficiently, a genetic algorithm to optimize the molecules automatically, and the DFTB+ (self-consistent charge density functional tight-binding) method to calculate electronic properties. Thereby, almost every class of materials─even macromolecules or monomers─can be studied easily.
View Article and Find Full Text PDFA novel intermolecular system D-π⋯π'-A was constructed with tetraphenylethylene (TPE) and borondipyrromethene (BODIPY), which had a synergistic effect on PDT and PTT (1 + 1 > 2). The PTT effect of TPD-BOA(D/A) was 1.7 times the sum of BOA + TPD; the effect of PDTAD was 1.
View Article and Find Full Text PDFSmall organic conjugated molecules are key elements for low-cost photovoltaic devices. One example is cyanopyridone molecules. By modifying these molecules, for instance through optimally chosen functional groups attached to the backbone, their properties can be improved.
View Article and Find Full Text PDFDye-sensitized solar cells (DSSCs) have attracted much interest during the past few decades. However, it is still a tremendous challenge to identify organic molecules that give an optimal power conversion efficiency (PCE). Here, we apply our recently developed, inverse-design method for this issue with the special aim of identifying porphyrins with promisingly high PCE.
View Article and Find Full Text PDFWe present an inverse-design method, the poor man's materials optimization, that is designed to identify materials within a very large class with optimized values for a pre-chosen property. The method combines an efficient genetic-algorithm-based optimization, an automatic approach for generating modified molecules, a simple approach for calculating the property of interest, and a mathematical formulation of the quantity whose value shall be optimized. In order to illustrate the performance of our approach, we study the properties of organic molecules related to those used in dye-sensitized solar cells, whereby we, for the sake of proof of principle, consider benzene as a simple test system.
View Article and Find Full Text PDFA series of D-π-A zinc porphyrin sensitizers bearing a substituted iminodibenzyl group at the porphyrin meso position, which is expected to have different electron-donating abilities, were designed. Theoretical studies were performed to examine the photovoltaic properties of these molecules in dye-sensitized solar cells (DSSCs). In particular, the important concepts, the Fukui function and the extended condensed Fukui function, are employed to describe the electron-donating abilities accurately at the quantitative level.
View Article and Find Full Text PDF