Publications by authors named "ChenXiang Lin"

Due to resistance to common antibiotics, methicillin-resistant Staphylococcus aureus (MRSA) infections pose a significant threat to human health. In this study, we developed an injectable, adhesive, and biocompatible hydrogel with multiple functions. Specifically, carboxymethyl chitosan (CMCS) crosslinked with hyaluronic acid (HA) forms the primary framework of the hydrogel.

View Article and Find Full Text PDF

A palladium-catalyzed [2π + 2σ] cycloaddition of vinyl bicyclo[1.1.0]butanes with methyleneindolinones has been developed.

View Article and Find Full Text PDF

A structure-dependent, palladium-catalyzed switchable alder-ene/[2π + 2σ] cycloaddition of VBCBs with α-ketoesters has been reported. A variety of cyclobutenes and 2-oxabicyclo[2.1.

View Article and Find Full Text PDF

Force-induced changes in protein structure and function mediate cellular responses to mechanical stresses. Existing methods to study protein conformation under mechanical force are incompatible with biochemical and structural analysis. Taking advantage of DNA nanotechnology, including the well-defined geometry of DNA origami and programmable mechanics of DNA hairpins, we built a nanodevice to apply controlled forces to proteins.

View Article and Find Full Text PDF

Nucleoporins (nups) in the nuclear pore complex (NPC) form a selective barrier that suppresses the diffusion of most macromolecules while enabling rapid transport of nuclear transport receptor (NTR)-bound cargos. Recent studies have shown that the NPC may dilate and constrict, but how altering the NPC diameter affects its selective barrier properties remains unclear. Here, we build DNA nanopores with programmable diameters and nup arrangements to model the constricted and dilated NPCs.

View Article and Find Full Text PDF

Cellular mechanotransduction, a process central to cell biology, embryogenesis, adult physiology, and multiple diseases, is thought to be mediated by force-driven changes in protein conformation that control protein function. However, methods to study proteins under defined mechanical loads on a biochemical scale are lacking. We report the development of a DNA-based device in which the transition between single- and double-stranded DNA applies tension to an attached protein.

View Article and Find Full Text PDF

The early diagnosis and real-time monitoring of bacterial infections are of great significance for the establishment of integrated diagnosis and treatment systems. In this study, a pH-responsive smart hydrogel patch system, named CABP, was developed to monitor and treat wound infections. CABP has a sandwich structure, with non-woven fabric/chitosan (NF/CS) as the intermediate skeleton layer, Agarose/chitosan/Bromothymol Blue (AG/CS/BTB) hydrogel as the detection layer, and Agarose/chitosan/phthalocyanine (AG/CS/Pc) hydrogel as the treatment layer.

View Article and Find Full Text PDF

An unusual spiroannulation/cycloisomerization cascade of 3-(2-ethynylaryl)--tosylaziridines with indoles enabled by cooperative gold/scandium catalysis is presented, which facilitates the synthesis of 5-benzo[]carbazoles in moderate to excellent yields. This protocol features a broad substrate scope and good functional-group compatibility. Additionally, the resulting 5-benzo[]carbazoles exhibit good fluorescence properties, demonstrating the synthetic practicality of this method.

View Article and Find Full Text PDF

Cellular mechanotransduction, a process central to cell biology, embryogenesis, adult physiology and multiple diseases, is thought to be mediated by force-driven changes in protein conformation that control protein function. However, methods to study proteins under defined mechanical loads on a biochemical scale are lacking. We report the development of a DNA based device in which the transition between single-stranded and double-stranded DNA applies tension to an attached protein.

View Article and Find Full Text PDF

Nonvesicular lipid transport among different membranes or membrane domains plays crucial roles in lipid homeostasis and organelle biogenesis. However, the forces that drive such lipid transport are not well understood. We propose that lipids tend to flow towards the membrane area with a higher membrane protein density in a process termed lipid osmosis.

View Article and Find Full Text PDF

Nucleoporins (nups) in the central channel of nuclear pore complexes (NPCs) form a selective barrier that suppresses the diffusion of most macromolecules while enabling rapid transport of nuclear transport receptors (NTRs) with bound cargos. The complex molecular interactions between nups and NTRs have been thought to underlie the gatekeeping function of the NPC. Recent studies have shown considerable variation in NPC diameter but how altering NPC diameter might impact the selective barrier properties remains unclear.

View Article and Find Full Text PDF

Nonvesicular lipid transport among different membranes or membrane domains plays crucial roles in lipid homeostasis and organelle biogenesis. However, the forces that drive such lipid transport are not well understood. We propose that lipids tend to flow towards the membrane area with a higher membrane protein density in a process termed .

View Article and Find Full Text PDF

A palladium-catalyzed ring-opening [3 + 2]-annulation of spirovinylcyclopropanyl oxindoles with seven-membered cyclic -sulfonylimines has been developed. A wide range of seven-membered benzosultams featuring both a quaternary center and axially chiral biaryl scaffolds have been afforded in an average yield of 87% with moderate to excellent diastereoselectivities. The enantioenriched benzosultams were also accessed successfully in good yields with excellent atropoenantioselectivities enabled by the Pd(dba)/(,,)-SKP ligand.

View Article and Find Full Text PDF

The disassembly of nanomaterials is of particular interest for high-quality imaging and targeted therapies in the field of nanomedicine. In this study, we developed a novel strategy for fabricating self-assembled naphthalocyanine photosensitizers (SiNc@CEL) with intrinsically unique photochemical and photophysical properties. SiNc@CEL could be disassembled under the photothermal effect, and its photoactivity could be enhanced by 780 nm laser irradiation.

View Article and Find Full Text PDF

DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before.

View Article and Find Full Text PDF

Increasing evidence has suggested that the HIV-1 capsid enters the nucleus in a largely assembled, intact form. However, not much is known about how the cone-shaped capsid interacts with the nucleoporins (NUPs) in the nuclear pore for crossing the nuclear pore complex. Here, we elucidate how NUP153 binds HIV-1 capsid by engaging the assembled capsid protein (CA) lattice.

View Article and Find Full Text PDF

Delivering the virus genome into the host nucleus through the nuclear pore complex (NPC) is pivotal in human immunodeficiency virus 1 (HIV-1) infection. The mechanism of this process remains mysterious owing to the NPC complexity and the labyrinth of molecular interactions involved. Here we built a suite of NPC mimics-DNA-origami-corralled nucleoporins with programmable arrangements-to model HIV-1 nuclear entry.

View Article and Find Full Text PDF

Photocatalytic water splitting is forecasted as a promising strategy for H production. In this work, novel zinc oxide/zinc sulfide (ZnOS-) ( = 1, 2, 3 and 4) heterostructures were fabricated by a collaborative hydrothermal and calcination method with different amounts of trithiocyanuric acid. The formation of ZnOS- heterostructures was confirmed by PXRD, XPS, and HRTEM.

View Article and Find Full Text PDF

CLASPs (cytoplasmic linker-associated proteins) are ubiquitous stabilizers of microtubule dynamics, but their molecular targets at the microtubule plus-end are not understood. Using DNA origami-based reconstructions, we show that clusters of human CLASP2 form a load-bearing bond with terminal non-GTP tubulins at the stabilized microtubule tip. This activity relies on the unconventional TOG2 domain of CLASP2, which releases its high-affinity bond with non-GTP dimers upon their conversion into polymerization-competent GTP-tubulins.

View Article and Find Full Text PDF

The DNA-origami technique has enabled the engineering of transmembrane nanopores with programmable size and functionality, showing promise in building biosensors and synthetic cells. However, it remains challenging to build large (>10 nm), functionalizable nanopores that spontaneously perforate lipid membranes. Here, we take advantage of pneumolysin (PLY), a bacterial toxin that potently forms wide ring-like channels on cell membranes, to construct hybrid DNA-protein nanopores.

View Article and Find Full Text PDF

The diastereoselective assembly of spiroindolenines via a synergistic scandium/gold-catalyzed dearomative spiroannulation is herein described. This protocol offers access to a wide variety of spiroindolenine derivatives in 86% average yield with moderate to excellent diastereoselectivities (up to 97:3 dr). The control experimental studies lend support to the bimetallic relay catalysis.

View Article and Find Full Text PDF

Membrane dynamics in living organisms can arise from proteins adhering to, assembling on, and exerting force on cell membranes. Programmable synthetic materials, such as self-assembled DNA nanostructures, offer the capability to drive membrane-remodeling events that resemble protein-mediated dynamics but with user-defined outcomes. An illustrative example is the tubular deformation of liposomes by DNA nanostructures with purposely designed shapes, surface modifications, and self-assembling properties.

View Article and Find Full Text PDF

Amphiphiles tend to self-assemble into various structures and morphologies in aqueous environments (e.g., micelles, tubes, fibers, vesicles, and lamellae).

View Article and Find Full Text PDF

In this study, Rose Bengal (RB) was loaded onto mesoporous silica coated gold nanorods (AuNR@SiO-NH) to form a novel multifunctional platform for antimicrobial therapy (AuNR@SiO-NH-RB). The platform combines the photothermal functions of AuNR and the photodynamic functions of RB to effectively inactivate bacteria under irradiation. Moreover, AuNR@SiO-NH-RB showed negligible cytotoxicity and good blood compatibility.

View Article and Find Full Text PDF