Publications by authors named "Chen-pin Hung"

The oxycyclohexyl acid BMS-986278 () is a potent lysophosphatidic acid receptor 1 (LPA) antagonist, with a human LPA of 6.9 nM. The structure-activity relationship (SAR) studies starting from the LPA antagonist clinical compound BMS-986020 (), which culminated in the discovery of , are discussed.

View Article and Find Full Text PDF

G-protein-coupled receptor 119 (GPR119) is expressed predominantly in pancreatic β-cells and in enteroendocrine cells in the gastrointestinal tract. GPR119 agonists have been shown to stimulate glucose-dependent insulin release by direct action in the pancreas and to promote secretion of the incretin GLP-1 by action in the gastrointestinal tract. This dual mechanism of action has generated significant interest in the discovery of small molecule GPR119 agonists as a potential new treatment for type 2 diabetes.

View Article and Find Full Text PDF

The 5-HT2C receptor has been implicated as a critical regulator of appetite. Small molecule activation of the 5-HT2C receptor has been shown to affect food intake and regulate body weight gain in rodent models and more recently in human clinical trials. Therefore, 5-HT2C is a well validated target for anti-obesity therapy.

View Article and Find Full Text PDF

A series of 2,3,3a,4-tetrahydro-1H-pyrrolo[3,4-c]isoquinolin-5(9bH)-ones is described, several examples of which exhibit potent 5-HT(2C) agonism with excellent selectivity over the closely related 5-HT(2A) and 5-HT(2B) receptors. Compounds such as 38 and 44 were shown to be effective in reducing food intake in an acute rat feeding model.

View Article and Find Full Text PDF

Agonists of the 5-HT(2C) receptor have been shown to suppress appetite and reduce body weight in animal models as well as in humans. However, agonism of the related 5-HT(2B) receptor has been associated with valvular heart disease. Synthesis and biological evaluation of a series of novel and highly selective dihydroquinazolinone-derived 5-HT(2C) agonists with no detectable agonism of the 5-HT(2B) receptor is described.

View Article and Find Full Text PDF

Robust pharmaceutical treatment of obesity has been limited by the undesirable side-effect profile of currently marketed therapies. This paper describes the synthesis and optimization of a new class of pyrazinoisoindolone-containing, selective 5-HT2C agonists as antiobesity agents. Key to optimization of the pyrazinoisoindolone core was the identification of the appropriate substitution pattern and functional groups which led to the discovery of (R)-9-ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one (58), a 5-HT2C agonist with >300-fold functional selectivity over 5-HT2B and >70-fold functional selectivity over 5-HT2A.

View Article and Find Full Text PDF