Publications by authors named "Chen-Ying Xu"

Studying the stoichiometric characteristics of soil nutrients aids in evaluating soil quality and deciphering the coupling of soil nutrients. The influence of migratory bird activities on the dynamics of wetland soil nutrients and their stoichiometric remains unclear. We classified the central, peripheral and adjacent natural grassy areas as severe, mild, and no bird activity (control), respectively, in Donghu meadow, a representative migratory bird habitat in Poyang Lake, based on flock characteristics and initial surveys.

View Article and Find Full Text PDF

Ru-doped CoS hollow porous polyhedrons (Ru-CoS HPPs) derived from zeolitic-imidazolate-frameworks were synthesized through hydrothermal coprecipitation and thermal decomposition methods. The results indicate that Ru-CoS-500 HPPs possess a strong Ru-Co synergistic effect, large electrochemical surface area, and sufficient active sites, endowing them with excellent hydrogen evolution reaction performance.

View Article and Find Full Text PDF

MicroRNA (MiRNA) plays a crucial role in biological cells to enable assessment of a cancer's development stage. Increasing evidence has shown that the accurate and sensitive detection of miRNA holds the key toward correct disease diagnosis. However, some characteristics of miRNAs, such as their short chains, low concentration, and similar sequences, make it difficult to detect miRNA in biological samples.

View Article and Find Full Text PDF

A highly sensitive electrochemical biosensor for detection of platelet-derived growth factor-BB (PDGF-BB) is developed by using Se-doped multi-walled carbon nanotubes (MWCNTs)-graphene hybrids as electrode supporting substrate, hemin/G-quadruplex as trace labels and Y-shaped DNA-aided target recycling as signal magnifier. The aptamer-containing hairpin probes were first immobilized on the electrode. When target PDGF-BB was added, the aptamer binded PDGF-BB to trigger catalytic assembly of two other hairpins to form many G-quadruplex Y-junction DNA structures, which released PDGF-BB to again bind the intact aptamer to initiate another assembly cycle.

View Article and Find Full Text PDF

In this work, we report an ultrasensitive electrochemical biosensor for microRNA-21 (miRNA-21) detection by using a competitive RNA-RNA hybridization configuration. A biotinylated miRNA of the self-same sequence with the target miRNA is mixed with the samples, and allowed competition with the target miRNA for a thiolated RNA probe immobilized onto a tungsten diselenide (WSe) nanosheet modified electrode. Thereafter the current response is obtained by forming the hybridized biotinylated miRNA with streptavidin-horseradish peroxidase (HRP) conjugates to catalyze the HO + hydroquinone (HQ) system.

View Article and Find Full Text PDF

A novel competitive aptasensor for thrombin detection is developed by using a tetrahedral DNA (T-DNA) probe and hybridization chain reaction (HCR) signal amplification. Sulfur and nitrogen co-doped reduced graphene oxide (SN-rGO) is firstly prepared by a simple reflux method and used for supporting substrate of biosensor. Then, T-DNA probe is modified on the electrode by Au-S bond and a competition is happened between target thrombin and the complementary DNA (cDNA) of aptamer.

View Article and Find Full Text PDF

In this work, a sensitive, universal and reusable electrochemical biosensor based on stannic oxide nanocorals-graphene hybrids (SnO NCs-Gr) is developed for target DNA detection by using two kinds of DNA enzymes for signal amplification through an autonomous cascade DNA duplication strategy. A hairpin probe is designed composing of a projecting part at the 3'-end as identification sequence for target, a recognition site for nicking endonuclease, and an 18-carbon shim to stop polymerization process. The designed DNA duplication-incision-replacement process is handled by KF polymerase and endonuclease, then combining with gold nanoparticles as signal carrier for further signal amplification.

View Article and Find Full Text PDF

MicroRNAs (MiRNAs) play multiple crucial regulating roles in cell which can regulate one third of protein-coding genes. MiRNAs participate in the developmental and physiological processes of human body, while their aberrant adjustment will be more likely to trigger diseases such as cancers, kidney disease, central nervous system diseases, cardiovascular diseases, diabetes, viral infections and so on. What's worse, for the detection of miRNAs, their small size, high sequence similarity, low abundance and difficult extraction from cells impose great challenges in the analysis.

View Article and Find Full Text PDF

An ultrasensitive electrochemical biosensor for detecting microRNAs is fabricated based on hollow molybdenum disulfide (MoS) microcubes. Duplex-specific nuclease, enzyme and electrochemical-chemical-chemical redox cycling are used for signal amplification. Hollow MoS microcubes constructed by ultrathin nanosheets are synthesized by a facile template-assisted strategy and used as supporting substrate.

View Article and Find Full Text PDF

An ultrasensitive electrochemical biosensor for microRNA (miRNA) is developed based on tungsten oxide-graphene composites coupling with catalyzed hairpin assembly target recycling and enzyme signal amplification. WO3-Gr is prepared by a simple hydrothermal method and then coupled with gold nanoparticles to act as a sensing platform. The thiol-terminated capture probe H1 is immobilized on electrode through Au-S interaction.

View Article and Find Full Text PDF

A 2-dimensional tungsten disulfide-acetylene black (WS-AB) composite is synthesized by a simple hydrothermal method to achieve excellent electrochemical properties for applications as a DNA biosensor. The biosensor is fabricated based on the Au nanoparticles (AuNPs) and WS-AB composite modified electrode, which subsequently is used to couple with a capture probe by an Au-S bond, then modified with target DNA, auxiliary DNA and bio-H1-bio-H2 (H1-H2) to perform hybridization chain reaction for signal amplification. Herein, two DNA hairpins H1 and H2 are opened by the recognition probe.

View Article and Find Full Text PDF

Objective: The aim of this study was to investigate the prevalence of colorectal neoplasms in patients coronary artery disease (CAD) with or without a family history of colorectal cancer (CRC).

Methods: In this cross-sectional study, individuals with suspected CAD in the absence of cancer-related symptoms underwent coronary angiography for the first time, and were divided into CAD and non-CAD groups. Colonoscopy was performed in individuals at high-risk tier based on their Asia-Pacific colorectal screening (APCS) score.

View Article and Find Full Text PDF

A research was done to study the Pb adsorption by the root cell wall of tea plant extracted from Longjing 43. It was indicated that the amount of Pb adsorbed by the root cell wall increased with augment of the initial pH of the solution under acidic condition, dramatically as the pH ranged from 2.0 to 4.

View Article and Find Full Text PDF

Background And Aims: The association between gallstone disease and coronary artery atherosclerotic disease (CAD) remains unclear. To clarify their relationship, patients with CAD newly diagnosed by coronary angiography were investigated in this cross-sectional study.

Methods: The study cohort consisted of 1,270 patients undergoing coronary angiography for the first time between January 2007 and September 2011.

View Article and Find Full Text PDF

Background: Fatty liver index (FLI) was recently established to predict non-alcoholic fatty liver disease (NAFLD) in general population, which is known to be associated with coronary artery atherosclerotic disease (CAD).This study aims to investigate whether FLI correlates with NAFLD and with newly diagnosed CAD in a special Chinese population who underwent coronary angiography.

Methods: Patients with CAD (n = 231) and without CAD (n = 482) as confirmed by coronary angiography were included.

View Article and Find Full Text PDF

In this paper, a treatment process consisted of UASB, step-fed sequencing batch reactor (SFSBR) and magnesium ammonium phosphate precipitation reactor (MAP) was built to treat the large scale swine wastewater, which aimed at overcoming drawbacks of conventional anaerobic-aerobic treatment process and SBR treatment process, such as the low denitrification efficiency, high operating costs and high nutrient losses and so on. Based on the treatment process, a pilot engineering was constructed. It was concluded from the experiment results that the removal efficiency of COD, NH4(+) -N and TP reached 95.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are the typical persistent organic pollutants (POPs) in the environment. As a ubiquitous attenuation course of chlorinated organic compounds in anoxic environment, the microorganism-mediated reductive dechlorination process plays an important role in PCBs transformation, especially the transformation of higher chlorinated PCBs. The higher chlorinated PCBs can be dechlorinated in anaerobic condition, and thus, their persistence and toxicity can be decreased.

View Article and Find Full Text PDF

Persistent organic pollutants have increasingly become a critical environmental concern, while thermophiles have the high potential of degrading various kinds of environmental organic pollutants. At high temperatures, thermophiles have higher metabolic activity, and the competition by mesophiles is reduced, meanwhile, the solubility and bioavailability of some persistent organic pollutants are greatly increased, and thus, the degradation of the pollutants by thermophiles is more rapid and complete. Therefore, thermophils are of great significance for the bio-treatment of organic wastewater and the bioremediation of organic pollutants-contaminated sites.

View Article and Find Full Text PDF

Soil microbial indicator is one of the important biological indicators in evaluating the extent of soil contamination. In recent years, with the development of molecular biology, many studies have focused on the ecological functions of soil microorganisms by using metagenomics, metatranscriptome and metaproteomics. Relative to metagenomics and metatranscriptome, soil metaproteomics aims to investigate the spatial and temporal changes of the proteins extracted from soil as well as the functional components of soil microbial genomic expression products, which is more conclusive to explore the ecological functions of soil microbes and their roles in soil pollutants transportation and transformation.

View Article and Find Full Text PDF

Activated sludge process is widely used in treating a wide variety of wastewater, but the by-product is the large amount of excess sludge. To treat the excess sludge properly could spend 25%-60% of the total cost of wastewater treatment, while improperly treating the sludge could cause serious secondary pollution. Therefore, the reduction of excess sludge is becoming a rising challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Three Upflow Anaerobic Sludge Blanket (UASB) reactors were tested for Anammox enrichment using synthetic wastewater, comparing effects of Spherical Plastic (SP), Bamboo Charcoal (BC), and a control without carriers (CK).
  • All reactors demonstrated effective Anammox activity, achieving over 98% removal efficiencies for ammonium and nitrite, with effluent concentrations dropping below 1 mg/L.
  • The reactor with Bamboo Charcoal significantly boosted Anammox bacteria growth and accelerated the start-up period, reducing it to 85 days compared to 97 days for SP and 117 days for CK.
View Article and Find Full Text PDF

Anammox (anaerobic ammonium oxidation) is an important process of nitrogen cycle, with great potential for the practical use in removing nitrogen from the wastewater containing high concentration ammonium. However, the presence of high concentration organic carbon source is considered unfavorable to anammox. Coupling anammox and denitrification under the presence of organic carbon source could be a useful technique for removing both nitrogen and carbon.

View Article and Find Full Text PDF

Higher contents of NH(4)(+) and SS in wastewater hamper the anaerobic digestion; necessitating its pretreatment to reduce them. This study reveals optimization of struvite/MAP precipitation protocol followed by anaerobic digestion of pretreated swine wastewater for pollutants removal. Levels of different treatments: stirring speeds, 400 and 160 rpm; pH values, 9.

View Article and Find Full Text PDF

Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N).

View Article and Find Full Text PDF

Solid state phosphorous is an important phosphorus speciation controlling the phosphorous bioavailability and mobility in the environment. Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy, with its unique advantage of being a non-destructive method in identifying the local chemical information of target element at molecular level in situ, has become one of the frontier technologies for characterizing the speciation of chemical substances and clarifying the microscopic mechanisms of chemical reactions, attracting extensive attention in the field of environmental chemistry. This paper briefly introduced the basic theory of phosphorus XANES spectroscopy, summarized the applications of XANES spectroscopy in the researches of solid state phosphorus speciation in minerals, soils, and organic fertilizers, and analyzed the challenges and prospects of the applications of XANES spectroscopy in identifying the solid state phosphorus speciation in the environmental samples.

View Article and Find Full Text PDF