Publications by authors named "Chen-Yen Hung"

Completely synthetic cell cultivation materials for human pluripotent stem cells (hPSCs) are important for the future clinical use of hPSC-derived cells. Currently, cell culture materials conjugated with extracellular matrix (ECM)-derived peptides are being prepared using only one specific integrin-targeting peptide. We designed dual peptide-conjugated hydrogels, for which each peptide was selected from different ECM sites: the laminin β4 chain and fibronectin or vitronectin, which can target α6β1 and α2β1 or αVβ5.

View Article and Find Full Text PDF

We report on a unique photonic quantum source chip highly integrating four-stage photonic elements in a lithium niobate (LN) waveguide circuit platform, where an aperiodically poled LN (APPLN) electro-optic (EO) polarization mode converter (PMC) is sandwiched between two identical type-0 PPLN spontaneous parametric down-converters (SPDCs), followed by an EO phase controller (PC). These core nonlinear optic and EO building blocks on the chip are systematically characterized stage by stage to show its high performance as an integrated quantum source. The APPLN EO PMC, optimally constructed by a genetic algorithm, is characterized to have a broad bandwidth (>13 nm), benefiting an efficient control of broadband type-0 SPDC photon pairs featuring a short correlation time.

View Article and Find Full Text PDF

RNA, including mRNA, siRNA and miRNA, is part of a new class of patient treatments that prevent and treat several diseases. As an alternative to DNA therapy using plasmid DNA, RNA functions in the cellular cytosol, avoiding the potential risks of insertion into patient genomes. RNA drugs, including mRNA vaccines, need carrier materials for delivery into the patient's body.

View Article and Find Full Text PDF

We report the demonstration of an electro-optic (EO) switchable dual-wavelength (1064- and 1342-nm) Nd:YVO laser based on an aperiodically poled lithium niobate (APPLN) chip whose domain structure is designed using aperiodic optical superlattice (AOS) technology. The APPLN works as a wavelength-dependent EO polarization-state controller in the polarization-dependent laser gain system to enable switching among multiple laser spectra simply by voltage control. When the APPLN device is driven by a voltage-pulse train modulating between a V (in which target laser lines obtain gain) and a V (in which laser lines are gain suppressed), the unique laser system can produce Q-switched laser pulses at dual wavelengths 1064 and 1342 nm, single wavelength 1064 nm, and single wavelength 1342 nm, as well as their non-phase-matched sum-frequency and second-harmonic generations at V= 0, 267, and 895 V, respectively.

View Article and Find Full Text PDF

Background: The growing population of older adults worldwide is associated with an extended life expectancy and an increasing proportion of older adults with dynapenia. Most research on dynapenia has involved only populations of older adults living in the community; little research has examined the effects of risk factors on sleep quality among older adults with dynapenia residing in assisted living facilities.

Aim: This study examined the relationships among physical function, nutrition, cognitive function, depression, and sleep quality among older adults with dynapenia residing in assisted living facilities.

View Article and Find Full Text PDF

We demonstrate an electro-optic (EO) switch or in general, an EO controllable power divider based on a periodically poled lithium niobate (PPLN) polarization mode converter (PMC) and a five-waveguide adiabatic coupler integrated on a Ti:LN photonic circuit chip. In this integrated photonic circuit (IPC) device, the PPLN works as an EO controllable polarization rotator (and therefore a PMC), while the adiabatic coupler functions as a broadband polarization beam splitter (PBS). The 1-cm long PPLN EO PMC of the IPC device is characterized to have a half-wave (or switching) voltage of V∼20 V and a conversion bandwidth of ∼2.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) or cancer-initiating cells (CICs) are key factors for tumor generation and metastasis. We investigated a filtration method to enhance CSCs (CICs) from colon carcinoma HT-29 cells and primary colon carcinoma cells derived from patient colon tumors using poly(lactide--glycolic acid)/silk screen (PLGA/SK) filters. The colon carcinoma cell solutions were permeated via porous filters to obtain a permeation solution.

View Article and Find Full Text PDF

We report the first demonstration of broadband adiabatic directional couplers in thin-film lithium niobate on insulator (LNOI) waveguides. A three LN-waveguide configuration with each waveguide having a ridge cross section of less than 1 square micron, built atop a layer of SiO based on a 500-µm-thick Si substrate, has been designed and constructed to optically emulate a three-state stimulated Raman adiabatic passage system, with which a unique counterintuitive adiabatic light transfer phenomenon in a high coupling efficiency of >97% (corresponding to a >15 dB splitting ratio) spanning telecom S, C, and L bands for both TE and TM polarization modes has been observed for a 2-mm long coupler length. An even broader operating bandwidth of >800 nm of the device can be found from the simulation fitting of the experimental data.

View Article and Find Full Text PDF

The Deterministic Network (DetNet) is becoming a major feature for 5G and 6G networks to cope with the issue that conventional IT infrastructure cannot efficiently handle latency-sensitive data. The DetNet applies flow virtualization to satisfy time-critical flow requirements, but inevitably, DetNet flows and conventional flows interact/interfere with each other when sharing the same physical resources. This subsequently raises the hybrid DDoS security issue that high malicious traffic not only attacks the DetNet centralized controller itself but also attacks the links that DetNet flows pass through.

View Article and Find Full Text PDF

(1) Background: Link flooding attacks (LFA) are a spatiotemporal attack pattern of distributed denial-of-service (DDoS) that arranges bots to send low-speed traffic to backbone links and paralyze servers in the target area. (2) Problem: The traditional methods to defend against LFA are heuristic and cannot reflect the changing characteristics of LFA over time; the AI-based methods only detect the presence of LFA without considering the spatiotemporal series attack pattern and defense suggestion. (3) Methods: This study designs a deep ensemble learning model (Stacking-based integrated Convolutional neural network-Long short term memory model, SCL) to defend against LFA: (a) combining continuous network status as an input to represent "continuous/combination attacking action" and to help CNN operation to extract features of spatiotemporal attack pattern; (b) applying LSTM to periodically review the current evolved LFA patterns and drop the obsolete ones to ensure decision accuracy and confidence; (c) stacking System Detector and LFA Mitigator module instead of only one module to couple with LFA detection and mediation at the same time.

View Article and Find Full Text PDF

This study explored the basic attributes, physiological indices, cognitive states, and community participation of older male outpatients with frailty for predicting depression. Questionnaires were collected using purposive sampling from a medical clinic in a teaching hospital in northern Taiwan. One hundred and ninety frail men enrolled as participants.

View Article and Find Full Text PDF

We report the first fast switchable multiwavelength optical parametric oscillator based on aperiodic optical superlattice technology. The constructed aperiodically poled lithium niobate (APPLN) integrates the functionalities of two quasi-phase-matching devices on a chip to work simultaneously as an electro-optic (EO) switchable notch-like filter and a multiline optical parametric downconverter. When such an APPLN is built in a 1064-nm-pumped optical resonator system, we achieve the oscillation of dual signals at 1540 and 1550 nm, for a single signal at 1540 nm, and a single signal at 1550 nm in the system when the 3-cm-long APPLN is driven by 0 V, 354 V, and 805 V, respectively.

View Article and Find Full Text PDF

Hospitals are continuously working to reduce delayed analysis and specimen errors during transfers from testing stations to clinical laboratories. Radio-frequency identification (RFID) tags, which provide automated specimen labeling and tracking, have been proposed as a solution to specimen management that reduces human resource costs and analytic delays. Conventional RFID solutions, however, confront the problem of traffic jams and bottlenecks on the conveyor belts that connect testing stations with clinical laboratories.

View Article and Find Full Text PDF
Article Synopsis
  • The annual average concentration of fine particles in Taiwan is decreasing, but visibility remains poor due to persistent ambient haze.
  • A new method for analyzing the sources of haze combines air quality data with image processing from the Taiwan Environmental Protection Agency's monitoring stations.
  • The study found that different regions of Taiwan experience varying levels of haze contamination, and the method can assist in developing strategies to mitigate haze and its health impacts.
View Article and Find Full Text PDF

In Device-to-Device (D2D) communications, the first step is to find all of the neighboring peers in the network by performing a peer discovery process. Most previous studies use the social behaviors of the users to adjust the sending rates of the peer discovery messages (i.e.

View Article and Find Full Text PDF

We report, to the best of our knowledge, the first broadband polarization mode splitter (PMS) based on the adiabatic light passage mechanism in the lithium niobate (LiNbO) waveguide platform. A broad bandwidth of ~140 nm spanning telecom S, C, and L bands at polarization-extinction ratios (PER) of >20 dB and >18 dB for the TE and TM polarization modes, respectively, is found in a five-waveguide adiabatic coupler scheme whose structure is optimized by an adiabaticity engineering process in titanium-diffused LiNbO waveguides. When the five-waveguide PMS is integrated with a three-waveguide "shortcut to adiabaticity" structure, we realize a broadband, high splitting-ratio (ηc) mode splitter for spatial separation of TE- (H-) polarized pump (700-850 nm for ηc>99%), TM- (V-) polarized signal (1510-1630 nm for ηc>97%), and TE- (H-) polarized idler (1480-1650 nm for ηc>97%) modes.

View Article and Find Full Text PDF

G-T mispair frequently appears in eukaryotic DNA due to the spontaneous deamination of 5-methylcytosine paired with guanine and is therefore an important target for DNA mismatch repair (MMR). Our earlier studies showed the downregulation of G-T binding activities in cadmium (Cd)-exposed (Danio rerio) embryos. Since elevation of water temperature was reported to increase Cd toxicity in zebrafish, this study explored whether heat stress affected zebrafish mismatch binding capacity in the absence or presence of Cd.

View Article and Find Full Text PDF

Metasurfaces based on resonant nanophotonic structures have enabled innovative types of flat-optics devices that often outperform the capabilities of bulk components, yet these advances remain largely unexplored for quantum applications. We show that nonclassical multiphoton interferences can be achieved at the subwavelength scale in all-dielectric metasurfaces. We simultaneously image multiple projections of quantum states with a single metasurface, enabling a robust reconstruction of amplitude, phase, coherence, and entanglement of multiphoton polarization-encoded states.

View Article and Find Full Text PDF

Spontaneous parametric down-conversion (SPDC) is a widely used method to generate entangled photons, enabling a range of applications from secure communication to tests of quantum physics. Integrating SPDC on a chip provides interferometric stability, allows to reduce a physical footprint, and opens a pathway to true scalability. However, dealing with different photon polarizations and wavelengths on a chip presents a number of challenging problems.

View Article and Find Full Text PDF

The phase retrieval algorithm of a frequency-resolved optical gating (FROG) is generalized to handle traces seriously distorted by group delay dispersion and non-uniform phase-matching spectra arising from the nonlinear crystal. In our proof-of-concept experiments, 15 mm thick aperiodically poled lithium niobate was employed in FROG, and successfully reconstructed chirped signal pulses were actually stretched by >5 times inside the crystal. This method is particularly promising in the measurement of weak few-cycle pulses produced by supercontinuum generation in fibers.

View Article and Find Full Text PDF

Objective: This study adopted an inner ear test battery and MR imaging in patients with bilateral sudden sensorineural hearing loss (SSNHL) to investigate their causes, disease extent, and evaluate hearing outcome.

Patients And Methods: From 1995 to 2014, 16 patients with bilateral SSNHL received audiometry, caloric test and MR imaging. Vestibular-evoked myogenic potential (VEMP) test was added to the test battery after 2000.

View Article and Find Full Text PDF

Supercontinuum generation (SCG) is most efficient when the solitons can be excited directly at the pump laser wavelength. Quadratic nonlinear waveguides may induce an effective negative Kerr nonlinearity, so temporal solitons can be directly generated in the normal (positive) dispersion regime overlapping with common ultrafast laser wavelengths. There is no need for waveguide dispersion engineering.

View Article and Find Full Text PDF

Many applications of data partitioning (clustering) have been well studied in bioinformatics. Consider, for instance, a set N of organisms (elements) based on DNA marker data. A partition divides all elements in N into two or more disjoint clusters that cover all elements, where a cluster contains a non-empty subset of N.

View Article and Find Full Text PDF

We proposed and experimentally demonstrated the iterative domino algorithm to optimize optical superlattice with >10(5) unit blocks to achieve arbitrary target phase-matching power spectrum. This scheme can achieve unprecedented overall conversion efficiency and spectral fidelity with extremely high computation efficiency.

View Article and Find Full Text PDF

A series of platinum(II) acetylide complexes with elaborate long-chain pyridine-2,6-dicarboxamides was synthesized. These metal complexes are capable of immobilizing organic solvents to form luminescent metallogels through a combination of intermolecular hydrogen bonding, aromatic π-π, and van der Waals interactions. Fibrillar morphologies were identified by TEM for these metallogels.

View Article and Find Full Text PDF