Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation.
View Article and Find Full Text PDFInflammation, characterized by the activation of both resident and infiltrated immune cells, is accompanied by increased production of oxidizing and nitrating species. Nitrogen dioxide, the proximal nitrating species formed under these conditions, reacts with unsaturated fatty acids to yield nitroalkene derivatives. These electrophilic products modulate protein function via post-translational modification of susceptible nucleophilic amino acids.
View Article and Find Full Text PDFTRIP6 is an adaptor protein that regulates cell motility and antiapoptotic signaling. Although it has been implicated in tumorigenesis, the underlying mechanism remains largely unknown. Here we provide evidence that TRIP6 promotes tumorigenesis by serving as a bridge to promote the recruitment of p27(KIP1) to AKT in the cytosol.
View Article and Find Full Text PDFNontransformed cells can force tumor cells to assume a normal morphology and phenotype by the process of contact normalization. Transformed cells must escape this process to become invasive and malignant. However, mechanisms underlying contact normalization have not been elucidated.
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptor-gamma (PPARgamma) binds diverse ligands to transcriptionally regulate metabolism and inflammation. Activators of PPARgamma include lipids and anti-hyperglycemic drugs such as thiazolidinediones (TZDs). Recently, TZDs have raised concern after being linked with increased risk of peripheral edema, weight gain, and adverse cardiovascular events.
View Article and Find Full Text PDFThe G protein-coupled lysophosphatidic acid 2 (LPA(2)) receptor elicits prosurvival responses to prevent and rescue cells from apoptosis. However, G protein-coupled signals are not sufficient for the full protective effect of LPA(2). LPA(2) differs from other LPA receptor subtypes in the C-terminal tail, where it contains a zinc finger-binding motif for the interactions with LIM domain-containing TRIP6 and proapoptotic Siva-1, and a PDZ-binding motif through which it complexes with the NHERF2 scaffold protein.
View Article and Find Full Text PDFNitrated derivatives of fatty acids (NO2-FA) are pluripotent cell-signaling mediators that display anti-inflammatory properties. Current understanding of NO2-FA signal transduction lacks insight into how or if NO2-FA are modified or metabolized upon formation or administration in vivo. Here the disposition and metabolism of nitro-9-cis-octadecenoic (18:1-NO2) acid was investigated in plasma and liver after intravenous injection in mice.
View Article and Find Full Text PDFTRIP6 (thyroid receptor-interacting protein 6), also known as ZRP-1 (zyxin-related protein 1), is a member of the zyxin family that has been implicated in cell motility. Previously we have shown that TRIP6 binds to the LPA2 receptor and associates with several components of focal complexes in an agonist-dependent manner and, thus, enhances lysophosphatidic acid (LPA)-induced cell migration. Here we further report that the function of TRIP6 in LPA signaling is regulated by c-Src-mediated phosphorylation of TRIP6 at the Tyr-55 residue.
View Article and Find Full Text PDF