Hierarchically porous-structured materials show tremendous potential for catalytic applications. In this work, a facile method through the combination of three-dimensional (3D) printing and chemical dealloying was employed to synthesize a nanoporous-copper-encapsulating microporous-diamond-cellular-structure (NPC@DCS) catalyst. The developed NPC@DCS catalyst was utilized as a heterogeneous photo-Fenton-like catalyst where its catalytic applications in the remediation of organic wastewater were exemplified.
View Article and Find Full Text PDFThe Ti-6Al-4V alloy is the most common biomaterial used for bone replacements and reconstructions. Despite its advantages, the Ti-6Al-4V has a high stiffness that can cause stress-shielding. In this work, we demonstrated that the selective laser melting (SLM) technology could be used to fabricate porosity in Ti-6Al-4V extra low interstitial (ELI) to reduce its stiffness while improving cell adhesion and proliferation.
View Article and Find Full Text PDF