Publications by authors named "Chen-Jen Hsu"

Pharmacologic targeting of chromatin-associated protein complexes has shown significant responses in KMT2A-rearranged (KMT2A-r) acute myeloid leukemia (AML) but resistance frequently develops to single agents. This points to a need for therapeutic combinations that target multiple mechanisms. To enhance our understanding of functional dependencies in KMT2A-r AML, we have used a proteomic approach to identify the catalytic immunoproteasome subunit PSMB8 as a specific vulnerability.

View Article and Find Full Text PDF

Scribble complex proteins can influence cell fate decisions and self-renewal capacity of hematopoietic cells. While specific cellular functions of Scribble complex members are conserved in mammalian hematopoiesis, they appear to be highly context dependent. Using CRISPR/Cas9-based genetic screening, we have identified Scribble complex-related liabilities in AML including LLGL1.

View Article and Find Full Text PDF

Mutations of the JAK2 gene are frequent aberrations in the aging hematopoietic system and in myeloid neoplasms. While JAK-inhibitors efficiently reduce hyperinflammation induced by the constitutively active mutated JAK2 kinase, the malignant clone and abundance of mutated cells remains rather unaffected. Here, we sought to assess for genetic vulnerabilities of JAK2-mutated clones.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers conducted a detailed analysis to find new drugs for treating acute myeloid leukemia (AML) caused by fusion genes, specifically focusing on AML1-ETO (AE) driven AML.
  • They discovered that the fusion protein AE disrupts phospholipase C (PLC) signaling, with PLCgamma 1 (PLCG1) being a vital target that affects the leukemia's self-renewal and growth.
  • Inactivating PLCG1 in both mouse and human models led to reduced leukemia maintenance, while not affecting normal blood cell functions, suggesting that targeting the PLCG1 pathway could be a promising therapeutic strategy for AML1-ETO+ leukemia.
View Article and Find Full Text PDF

The epigenome regulates gene expression and provides a molecular memory of cellular events. A growing body of evidence has highlighted the importance of epigenetic regulation in physiological tissue homeostasis and malignant transformation. Among epigenetic mechanisms, the replacement of replication-coupled histones with histone variants is the least understood.

View Article and Find Full Text PDF