Publications by authors named "Chen-Ho Tung"

Developing thermally activated delayed fluorescence (TADF)-active silver clusters with near-unity quantum efficiency is of practical importance in cutting-edge optoelectronic devices, but remains a tremendous challenge due to the difficulty of de novo synthesis and uncertainty of properties. Herein, we demonstrate a lattice modulation on parent TADF-activate silver cluster, acheving TADF-driven photoluminescence quantum yield (PLQY) from 12% to near-unity. Systematic experimental and calculated results reveal that the lattice modulation effectively lower the singlet-triplet splitting (ΔEST) from 718 to 549 cm-1, thereby facilitating thermally activated reverse intersystem crossing: T5→S5, leading to extremely efficient TADF by surpassing both phosphorescence and non-radiative decay, thus boosting the near-unity PLQY.

View Article and Find Full Text PDF

The bottom-up synthesis of discrete tubular molecules that mimic the structural features of carbon nanotubes has been a long-standing pursuit for synthetic chemists. As the shortest segments of armchair-type carbon nanotubes, cycloparaphenylenes are regarded as ideal macrocyclic building blocks for achieving this goal. Here we report the synthesis of a helical tubular molecule featuring three diyne linkers between two site-specifically functionalized [9]cycloparaphenylenes.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) are widely employed in Fenton-like catalysis, yet guidelines for their high-performance design remain elusive. The Sabatier principle provides guidance for the ideal catalyst with the highest activity. Herein, the study meticulously engineered a series of SACs featuring a broad distribution of d-band center through single-atom coordination engineering, facilitating a comprehensive exploration of the Sabatier relationship in Fenton-like catalysis.

View Article and Find Full Text PDF

Two host-guest Ti-oxide clusters, Ti(NH) and TiCs, were synthesized and thoroughly characterized. They possess a rarely seen biloculate structure that encapsulates two NH and Cs guests, respectively. Interestingly, alkali metal cations can exchange places with NH .

View Article and Find Full Text PDF

The manipulation of single atom within the metallic kernel of nanoclusters has attracted considerable attention due to its potentials to elucidate kernel-based structure-property relationships at the single-atom level. Herein, new-designed chiral bialkynyl ligands, have been chosen as protective agents to isolate two pairs of 8-electron superatomic silver nanoclusters, R/S-Ag39 and R/S-Ag40. X-ray diffraction analysis reveals that Ag39 and Ag40 with the same number of chiral ligands, possess a closely analogous silver skeleton but a single-atomic difference.

View Article and Find Full Text PDF

The established capability of anion templates in precisely manipulating the size, geometry, and function of metal clusters is well acknowledged. However, the development of a systematic methodology for orchestrating the assembly of silver clusters, particularly those encompassing multiple distinct types of anion templates, remains elusive due to the formidable synthetic challenge. In this work, we report two novel silver clusters, Ag57 and Ag72, using two and three different anion templates, respectively.

View Article and Find Full Text PDF

Immobilizing molecular catalysts on electro-conductive supports (for example, multi-walled carbon nanotubes, CNTs) represent a promising way to well-defined catalyst/support interfaces, which has shown appreciable performance for catalytic transformation. However, their full potential is far from achieved due to insufficient utilization of the intrinsic activity for each immobilized molecular catalyst, especially at loadings that should allow decent current densities. In the present work, we discover host-guest interaction between tetra-crown ether substituted cobalt phthalocyanine and metal ions, for example K ions, not only eliminate catalyst aggregation at immobilization procedures but also reinforce catalyst/support interactions by additional electrostatic attractions under operational conditions.

View Article and Find Full Text PDF

Transition metal carbyne complexes are of fundamental importance in carbon-carbon bond formation, alkyne metathesis, and alkyne coupling reactions. Most reported iron carbyne complexes are stabilized by incorporating heteroatoms. Here we show the synthesis of bioinspired FeMo heterobimetallic carbyne complexes by the conversion of CH through a diverse series of intermediates.

View Article and Find Full Text PDF

Coinage metal nanoclusters (NCs), comprising a few to several hundred atoms, are prized for their size-dependent properties crucial in catalysis, sensing, and biomedicine. However, their practical application is often hindered by stability and reactivity challenges. Thiacalixarene, a macrocyclic ligand, shows promise in stabilizing silver, copper, and bimetallic NCs, enhancing their structural integrity and chemical stability.

View Article and Find Full Text PDF

Herein is the first example of photocatalytic cross-coupling of alkenes with aldehydes by a single catalyst without an external photosensitizer and any additives. Irradiation of the aromatic aldehyde and cobaloxime catalyst results in the formation of an acyl radical, which undergoes radical addition with alkene or indole and subsequently β-H elimination to afford alkenyl ketone. The reaction features cheap and readily available raw materials, a broad substrate scope, and mild conditions, even for late-stage derivatization of bioactive compounds.

View Article and Find Full Text PDF

Represented herein is the first 1,3-difunctionalization of alkenes via photocatalysis. A single cobaloxime is used to carry out two catalytic cycles in which cobaloxime is used not only as a photocatalyst to initiate the reaction but also as a metal catalyst for the β-H elimination process. Electron-deficient alkenes, electron-rich alkenes, and unactivated alkenes could be directly converted to 1,3-bisphosphorylated products, even unsymmetric 1,3-bisphosphorylated products, with only H as a byproduct under extremely mild reaction conditions.

View Article and Find Full Text PDF

Despite the discovery of a series of fullerenes and a handful of noncarbon clusters with the typical topology of -C, the smallest fullerene with a large degree of curvature, C, and its other-element counterparts are difficult to isolate experimentally. In coinage metal nanoclusters (NCs), the first all-gold fullerene, Au, was discovered after a long-lasting pursuit, but the isolation of similar silvery fullerene structures is still challenging. Herein, we report a flying saucer-shaped 102-nuclei silver NC () with a silvery fullerene kernel of Ag, which is embraced by a robust cyclic anionic passivation layer of (KPO).

View Article and Find Full Text PDF

We report two bridging-diazene diiron complexes [Cp*Fe(8-quinolinethiolate)](μ-NH) () and [Cp*Fe(1,2-CyPCHS)](μ-NH) (), synthesized by the reaction of hydrazine with the corresponding thiolate-based iron half-sandwich complex, [Cp*Fe(8-quinolinethiolate)] () and Cp*Fe(1,2-CyPCHS) (). Crystallographic analysis reveals that the thiolate sites in and can engage in N-H···S hydrogen bonding with the diazene protons. is thermally stable in both solid and solution states, allowing for one-electron oxidation to afford a cationic diazene radical complex [] at room temperature.

View Article and Find Full Text PDF

The functionalization of polyoxovanadate clusters is promising but of great challenge due to the versatile coordination geometry and oxidation state of vanadium. Here, two unprecedented silsesquioxane ligand-protected "fully reduced" polyoxovanadate clusters were fabricated via a facial solvothermal methodology. The initial mixture of the two polyoxovanadate clusters with different colors and morphologies (green plate and blue block ) was successfully separated as pure phases by meticulously controlling the assembly conditions.

View Article and Find Full Text PDF

Direct site-selective and enantioselective oxyfunctionalization of C(sp)-H bonds to form alcohols with a general scope, with predictable selectivities, and in preparatively useful yields represents a paradigm shift in the standard logic of synthetic organic chemistry. However, the knowledge of either enzymatic or nonenzymatic asymmetric hydroxylation of tertiary C-H bonds for enantioenriched tertiary alcohol synthesis is sorely lacking. Here, we report a practical manganese-catalyzed enantio-differentiating hydroxylation of tertiary propargylic C-H bonds in acyclic systems, producing a wide range of structurally diverse enantioenriched tertiary propargyl alcohols in high efficiency with extremely efficient chemo- and enantio-discrimination.

View Article and Find Full Text PDF

Plastic pollution is worsening the living conditions on Earth, primarily due to the toxicity and stability of non-biodegradable plastics (NBPs). Photocatalytic cracking of NBPs is emerging as a promising way to cleave inert C-C bonds and abstract the carbon atoms from these wastes into valuable chemicals and fuels. However, controlling these processes is a huge challenge, ascribed to the complicated reactions of various NBPs.

View Article and Find Full Text PDF

Expanding the diversity of multi-macrocyclic nanocarbons, particularly those with all-benzene scaffolds, represents intriguing yet challenging synthetic tasks. Complementary to the existing synthetic approaches, here we report an efficient and modular post-functionalization strategy that employs iridium-catalyzed C-H borylation of the highly strained meta-cycloparaphenylenes (mCPPs) and an mCPP-derived catenane. Based on the functionalized macrocyclic synthons, a number of novel all-benzene topological structures including linear and cyclic chains, polycatenane, and pretzelane have been successfully prepared and characterized, thereby showcasing the synthetic utility and potential of the post-functionalization strategy.

View Article and Find Full Text PDF

The replacement of a CC unit with an isoelectronic BN unit in aromatic systems can give rise to molecules and materials with fascinating properties. We report here the synthesis, characterization, and reactivity of a 1,4,2,3-diazadiborole species, 2, featuring an unprecedented 6π-aromatic BN-heterocyclic moiety that is isoelectronic to cyclopentadienide (Cp). Bearing an unsymmetrical B=B entity, 2 exhibits reactivity toward oxidants, protic reagents, electrophiles, and unsaturated substrates.

View Article and Find Full Text PDF

SbS has been extensively used as light absorber for photoelectrochemical cell. However, its p-type nature may result in the formation of Schottky junction with substrates, thus hindering the collection of photogenerated holes. Herein, an ultrathin CuS layer is successfully engineered as the bottom junction for SbS for the first time.

View Article and Find Full Text PDF

Represented herein is a simple thiol identified as an effective precursor to photochemically form a carbocation. Thanks to the thiyl radical rapid transformation to disulfide, which serves not only to stabilize the generated thiyl radical but also to allow the second electron transfer to form a carbocation. The resulting carbocations, including primary benzylic, secondary, and tertiary carbocations, can smoothly couple with nitrogen, oxygen, and carbon nucleophilic coupling partners as well as complex drug molecules, accompanied by elemental sulfur formation in air.

View Article and Find Full Text PDF

Near infrared (NIR) emitter with circularly polarized phosphorescence (CPP), known as NIR CPP, has emerged as a key part in the research of cutting-edge luminescent materials. However, it remains a challenge to obtain nanoclusters with NIR CPP activity. Here, we propose an asymmetric transformation approach to efficiently synthesize two pairs of chiral silver nanoclusters (R/S-Ag29 and R/S-Ag16) using an achiral Ag nanocluster as starting material in the presence of different concentration chiral inducer (R/S)-1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (R/S-BNP).

View Article and Find Full Text PDF

Atomically precise superatomic copper nanoclusters (Cu NCs) have been the subject of immense interest for their intriguing structures and diverse properties; nonetheless, the variable oxidation state of copper ions and complex solvation effects in wet synthesis systems pose significant challenges for comprehending their synthesis and crystallization mechanism. Herein, we present a solvent-mediated approach for the synthesis of two Cu NCs, namely, superatomic and pure-Cu(I) . They initially formed as a hetero-phase and then separated as a homo-phase via modulating binary solvent composition.

View Article and Find Full Text PDF

Herein, two atomically precise silver nanoclusters, Ag54 and Ag33, directed by inner anion templates (CrO and/or Cl), are initially isolated as a mixed phase from identical reactants across a wide temperature range (20-80 °C). Interestingly, fine-tuning the reaction temperature can realize pure phase synthesis of the two nanoclusters; that is, a metastable Ag54 is kinetically formed at a low temperature (20 °C), whereas such a system is steered towards a thermodynamically stable Ag33 at a relatively high temperature (80 °C). Electrospray ionization mass spectrometry illustrates that the stability of Ag33 is superior to that of Ag54, which is further supported by density functional theory calculations.

View Article and Find Full Text PDF

Photoredox catalytic processes offer the potential for precise chemical reactions using light and materials. The central determinant is identified as interfacial charge transfer, which simultaneously engenders distinctive behavior in the overall reaction. An in-depth elucidation of the main mechanism and highlighting of the complexity of interfacial charge transfer can occur through both diffusive and direct transfer models, revealing its potential for sophisticated design in complex transformations.

View Article and Find Full Text PDF

Heteronuclear Fe(μ-H)Zn hydride Cp*Fe(1,2-CyPCH)HZnEt () undergoes reversible intramolecular C-H reductive elimination through coupling of the cyclometalated phosphinoaryl ligand and the hydride, giving rise to a formal Fe(0)-Zn(II) species. Addition of CO intercepts this equilibrium, affording Cp*(CyPPh)(CO)Fe-ZnEt that features a dative Fe-Zn bond. Significantly, this system achieves bimetallic H addition, as demonstrated by the transformation of the monohydride Fe(μ-H)Zn to a deuterated dihydride Fe-(μ-D)-Zn upon reaction with D.

View Article and Find Full Text PDF