To better implement mesenchymal stem cell (MSC)-based therapy toward cartilage diseases, a more efficient and less off-target chondrogenesis protocol is needed. Here, we present a protocol to induce human MSC chondrogenesis via Wnt antagonism. We describe steps for pellet formation, Wnt antagonism-based chondrogenic induction, and refreshing the differentiation medium.
View Article and Find Full Text PDFThree-dimensional (3D) in vitro spheroid/organoid culture increasingly appears to better mimic physiological states than standard 2D systems. The biological consequence of 3D spheroids, however, differs for different cell types: for pluripotent embryonic stem cells (ESCs), differentiation and loss of stemness occur, while the converse is true for somatic and cancer cells. Despite such diverse consequences, there are likely conserved mechanisms governing 3D spheroid formation across cell types that are unknown but could be efficiently targeted for translational application.
View Article and Find Full Text PDFAs invaluable as the standard 2-dimensional (2D) monolayer in vitro cell culture system has been, there is increasing evidence that 3-dimensional (3D) non-adherent conditions are more relevant to the in vivo condition. While one of the criteria for human mesenchymal stem cells (MSCs) has been in vitro plastic adherence, such 2D culture conditions are not representative of in vivo cell-cell and cell-extracellular matrix (ECM) interactions, which may be especially important for this progenitor/stem cell of skeletal and connective tissues. The 3D spheroid, a multicellular aggregate formed under non-adherent 3D in vitro conditions, may be particularly suited as an in vitro method to better understand MSC physiological processes, since expression of ECM and other adhesion proteins are upregulated in such a cell culture system.
View Article and Find Full Text PDFHuman mesenchymal stem cells (MSCs) remain one of the best cell sources for cartilage, a tissue without regenerative capacity. However, MSC chondrogenesis is commonly induced through TGFβ, a pleomorphic growth factor without specificity for this lineage. Using tissue- and induced pluripotent stem cell-derived MSCs, we demonstrate an efficient and precise approach to induce chondrogenesis through Wnt/β-catenin antagonism alone without TGFβ.
View Article and Find Full Text PDFIn recent years, biomimetic cell membrane-derived particles have emerged as a new class of drug delivery system with advantages of biocompatibility, ease of isolation and long circulation profile. Here we report the development and potential theranostic applications of a new biomimetic acoustically-responsive droplet system derived from mammalian red blood cell membrane (RBCM). We hypothesized that drug-loaded RBCM droplets (RBCMDs) would undergo a transition from liquid (droplets) to gas (bubbles) upon high intensity focused ultrasound (HIFU) insonation, resulting in on-demand drug release.
View Article and Find Full Text PDF