Electronic communication in natural systems makes use, inter alia, of molecular transmission, where electron transfer occurs within networks of redox reactions, which play a vital role in many physiological systems. In view of the limited understanding of redox signaling, we developed an approach and an electrochemical-optical lab-on-a-chip to observe cellular responses in localized redox environments. The developed fluidic micro-system uses electrogenetic bacteria in which a cellular response is activated to electrically and chemically induced stimulations.
View Article and Find Full Text PDFMicroelectronic devices can directly communicate with biology, as electronic information can be transmitted via redox reactions within biological systems. By engineering biology's native redox networks, we enable electronic interrogation and control of biological systems at several hierarchical levels: proteins, cells, and cell consortia. First, electro-biofabrication facilitates on-device biological component assembly.
View Article and Find Full Text PDFβ-galactosidase (β-gal) is one of the most prevalent markers of gene expression. Its activity can be monitored via optical and fluorescence microscopy, electrochemistry, and many other ways after slight modification using protein engineering. Here, we have constructed a chimeric version that incorporates a streptococcal protein G domain at the N-terminus of β-gal that binds immunoglobins, namely IgG.
View Article and Find Full Text PDFChemotaxis is a fundamental bacterial response mechanism to changes in chemical gradients of specific molecules known as chemoattractant or chemorepellent. The advancement of biological platforms for bacterial chemotaxis research is of significant interest for a wide range of biological and environmental studies. Many microfluidic devices have been developed for its study, but challenges still remain that can obscure analysis.
View Article and Find Full Text PDFBackground: Microbial co-cultures and consortia are of interest in cell-based molecular production and even as "smart" therapeutics in that one can take advantage of division of labor and specialization to expand both the range of available functions and mechanisms for control. The development of tools that enable coordination and modulation of consortia will be crucial for future application of multi-population cultures. In particular, these systems would benefit from an expanded toolset that enables orthogonal inter-strain communication.
View Article and Find Full Text PDFBiofabrication utilizes biological materials and biological means, or mimics thereof, for assembly. When interfaced with microelectronics, electrobiofabricated assemblies enable exquisite sensing and reporting capabilities. We recently demonstrated that thiolated polyethylene glycol (PEG-SH) could be oxidatively assembled into a thin disulfide crosslinked hydrogel at an electrode surface; with sufficient oxidation, extra sulfenic acid groups are made available for covalent, disulfide coupling to sulfhydryl groups of proteins or peptides.
View Article and Find Full Text PDFMicrogels of biopolymers such as alginate are widely used to encapsulate cells and other biological payloads. Alginate is an attractive material for cell encapsulation because it is nontoxic and convenient: spherical alginate gels are easily created by contacting aqueous droplets of sodium alginate with divalent cations such as Ca. Alginate chains in the gel become cross-linked by Ca cations into a 3-D network.
View Article and Find Full Text PDFProcess conditions established during the development and manufacture of recombinant protein therapeutics dramatically impacts their quality and clinical efficacy. Technologies that enable rapid assessment of product quality are critically important. Here, we describe the development of sensor interfaces that directly connect to electronics and enable near real-time assessment of antibody titer and N-linked galactosylation.
View Article and Find Full Text PDFEmerging research indicates that biology routinely uses diffusible redox-active molecules to mediate communication that can span biological systems (e.g., nervous and immune) and even kingdoms (e.
View Article and Find Full Text PDFWe developed a bioelectronic communication system that is enabled by a redox signal transduction modality to exchange information between a living cell-embedded bioelectronics interface and an engineered microbial network. A naturally communicating three-member microbial network is 'plugged into' an external electronic system that interrogates and controls biological function in real time. First, electrode-generated redox molecules are programmed to activate gene expression in an engineered population of electrode-attached bacterial cells, effectively creating a living transducer electrode.
View Article and Find Full Text PDFSynthetic biology and metabolic engineering have expanded the possibilities for engineered cell-based systems. The addition of non-native biosynthetic and regulatory components can, however, overburden the reprogrammed cells. In order to avoid metabolic overload, an emerging area of focus is on engineering consortia, wherein cell subpopulations work together to carry out a desired function.
View Article and Find Full Text PDFSynthetic biology is typically exploited to endow bacterial cells with new biosynthetic capabilities. It can also serve to create "smart" bacteria such as probiotics that detect and treat disease. Here, we show how minimally rewiring the genetic regulation of bacterial cells can enable their ability to recognize and report on chemical herbicides, including those routinely used to clear weeds from gardens and crops.
View Article and Find Full Text PDFBiomacromolecules
February 2019
Biomacromolecules often possess information to self-assemble through low energy competing interactions which can make self-assembly responsive to environmental cues and can also confer dynamic properties. Here, we coupled self-assembling systems to create biofunctional multilayer films that can be cued to disassemble through either molecular or electrical signals. To create functional multilayers, we: (i) electrodeposited the pH-responsive self-assembling aminopolysaccharide chitosan, (ii) allowed the lectin Concanavalin A (ConA) to bind to the chitosan-coated electrode (presumably through electrostatic interactions), (iii) performed layer-by-layer self-assembly by sequential contacting with glycogen and ConA, and (iv) conferred biological (i.
View Article and Find Full Text PDFWe report a novel strategy for bridging information transfer between electronics and biological systems within microdevices. This strategy relies on our "electrobiofabrication" toolbox that uses electrode-induced signals to assemble biopolymer films at spatially defined sites and then electrochemically "activates" the films for signal processing capabilities. Compared to conventional electrode surface modification approaches, our signal-guided assembly and activation strategy provides on-demand electrode functionalization, and greatly simplifies microfluidic sensor design and fabrication.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2018
Quorum sensing (QS) enables intercellular communication after bacterial cells sense the autoinducers have reached or exceeded a critical concentration. Selectively amplifying specific bacterial "quorum" activity at a lower cell density is still a challenge. Here, we propose a novel platform of immune magnetic nano-assembly to amplify specific bacterial QS signaling via improving the bioavailability of autoinducers-2 (AI-2, furanosyl borate) from sender (wide-type, WT cells) to receiver (reporter cells).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2018
Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents.
View Article and Find Full Text PDFQuorum sensing (QS) exists widely among bacteria, enabling a transition to multicellular behaviour after bacterial populations reach a particular density. The coordination of multicellularity enables biotechnological application, dissolution of biofilms, coordination of virulence, and so forth. Here, a method to elicit and subsequently disperse multicellular behaviour among QS-negative cells is developed using magnetic nanoparticle assembly.
View Article and Find Full Text PDFRapid and portable detection of viable pathogen is highly desired to minimize the risk of foodborne pathogen outbreaks. Here we report a proof-of-concept fabrication methodology of a multifunctional film that allows established methods from bacterial recognition (antibodies) and nanotechnology (magnetic nanoparticles) to be coupled with electrochemical signal processing methods for detection of viable bacteria. Specifically, we enlist a sequence of externally applied electrical and magnetic signals to: i) guide the self-assembly of stimuli-responsive biopolymer; ii) incorporate magnetic nanoparticles to form a magnetic layer; iii) electro-synthesize a signal processing layer (redox-capacitor).
View Article and Find Full Text PDFSynthetic biologists construct innovative genetic/biological systems to treat environmental, energy, and health problems. Many systems employ rewired cells for non-native product synthesis, while a few have employed the rewired cells as 'smart' devices with programmable function. Building on the latter, we developed a genetic construct to control and direct bacterial motility towards hydrogen peroxide, one of the body's immune response signaling molecules.
View Article and Find Full Text PDFBiology often provides the inspiration for functional soft matter, but biology can do more: it can provide the raw materials and mechanisms for hierarchical assembly. Biology uses polymers to perform various functions, and biologically derived polymers can serve as sustainable, self-assembling, and high-performance materials platforms for life-science applications. Biology employs enzymes for site-specific reactions that are used to both disassemble and assemble biopolymers both to and from component parts.
View Article and Find Full Text PDFBiology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices.
View Article and Find Full Text PDFWe have developed a user-friendly microfluidic device for the study of gradient-mediated bacterial behaviors, including chemotaxis. This device rapidly establishes linear concentration gradients by exploiting solute diffusion through porous membranes in the absence of convective flows. As such, the gradients are created rapidly and can be sustained for long time periods (e.
View Article and Find Full Text PDFAntibacterial resistance is an issue of increasing severity as current antibiotics are losing their effectiveness and fewer antibiotics are being developed. New methods for combating bacterial virulence are required. Modulating molecular communication among bacteria can alter phenotype, including attachment to epithelia, biofilm formation, and even toxin production.
View Article and Find Full Text PDFA hydrogel-based dual film coating is electrofabricated for transducing bio-relevant chemical information into electronical output. The outer film has a synthetic biology construct that recognizes an external molecular signal and transduces this input into the expression of an enzyme that converts redox-inactive substrate into a redox-active intermediate, which is detected through an amplification mechanism of the inner redox-capacitor film.
View Article and Find Full Text PDFMotivations for the hierarchical assembly of protein complexes are diverse spanning biosensing, biomedical and bioreactor applications. The assembly processes should be simple, scalable, versatile, and biologically benign to minimize loss of component parts. A "plug and play" methodology comprising a generic linking apparatus may enable rapid design and optimization.
View Article and Find Full Text PDF