Publications by authors named "Chen Xingguo"

State abstraction is a widely used technique in reinforcement learning (RL) that compresses the state space to accelerate learning algorithms. However, designing an effective abstraction function in large-scale or high-dimensional state space problems remains a significant challenge. In this brief, we present a novel state abstraction method based on deep supervised hash learning (DSH) and provide a theoretical analysis of its near-optimal property.

View Article and Find Full Text PDF

Cell cycle regulatory enzyme Pin1 both catalyzes pSer/Thr--Pro isomerization and binds the same motif separately in its WW domain. To better understand the function of Pin1, a way to separate these activities is needed. An unnatural peptide library, RCO-pSer-Pro-NHR, was designed to identify ligands specific for the Pin1 WW domain.

View Article and Find Full Text PDF
Article Synopsis
  • Neonicotinoids (NEOs) are pesticides used in parks and farms, but we don't know enough about their effects on soil safety.
  • Our study looked at the levels of ten NEOs in park soils from three cities in China and found that most soil samples had many NEOs in them.
  • Guangzhou had the highest levels of these pesticides, and they can harm insects and other animals in the soil, which makes us worry about the risks to both nature and people.
View Article and Find Full Text PDF

As a novel class of chiral stationary phase (CPS) material, chiral covalent organic frameworks (CCOFs) have already shown great promise in open-tubular capillary electrochromatography (OT-CEC) for chiral separation. The synthesis methods of CCOFs used in OT-CEC mainly include bottom-up, post modification and chiral induction. The CCOFs synthesized by bottom-up and post modification strategies already have lots of applications in capillary electrochromatography, however, the chiral-induced synthesized via an asymmetric catalytic strategy has not yet been reported for using as the chiral stationary phase (CPS) in OT-CEC or even in chromatographic separation.

View Article and Find Full Text PDF

Since 1999, The Arabidopsis Information Resource (www.arabidopsis.org) has been curating data about the Arabidopsis thaliana genome.

View Article and Find Full Text PDF

Due to their high flexibility, low cost, and ease of handling, Unmanned Aerial Vehicles (UAVs) are often used to perform difficult tasks in complex environments. Stable and reliable path planning capability is the fundamental demand for UAVs to accomplish their flight tasks. Most researches on UAV path planning are carried out under the premise of known environmental information, and it is difficult to safely reach the target position in the face of unknown environment.

View Article and Find Full Text PDF

As a novel class of stationary phase materials, covalent organic frameworks (COFs) have shown great promise in open-tubular capillary electrochromatography. However, the current preparation of COFs coating capillaries heavily relies on tedious and time-consuming covalent bond methods. In this work, a novel, simple and rapid adsorption method was developed for fabrication of TPB-DMTP COF (fabricated from 1,3,5-tris(4-aminophenyl)benzene (TPB) and 2,5-dimethoxyterephthalaldehyde (DMTP)) coated capillary.

View Article and Find Full Text PDF

Capillary electrochromatography (CEC) has received increased attention from the academic community because it combines the excellent selectivity of high performance liquid chromatography (HPLC) and the high efficiency of capillary electrophoresis (CE). Selecting the most appropriate stationary phase material is crucial to achieve better separation effects in CEC. In recent years, a considerable number of materials, such as graphene oxide, proteins, metal organic frameworks, and covalent organic frameworks (COFs), have been widely used as stationary phases in CEC to further improve its separation performance and extend its scope of potential applications.

View Article and Find Full Text PDF

Metal-organic framework materials are a class of novel crystalline porous materials with regular pore structures formed by covalent bonding between metal centers and organic functional groups. Metal-organic framework materials have attracted great interest in analytical chemistry due to their unique properties such as good stability and permanent porosity. In this work, D-histidine was used to carry out chiral modification of zeolitic imidazolate framework-90 under mild conditions, and the D-histidine modified zeolitic imidazolate framework-90 coated capillary column was prepared.

View Article and Find Full Text PDF

A series of lanthanide-containing water-resistant nitrates, namely RE(OH)NO (RE = Tb(), Dy(), Ho(), and Er()), was obtained through the hydrothermal process. As possible nonlinear optical materials, they feature a layered isomorph composed of an [REO(OH)] polyhedron and an [NO] triangle, and the synergistic arrangement of the [REO(OH)] and [NO] groups in their structures leads to their obvious second-order nonlinear optical effect. Nevertheless, the unique optical absorption caused by the electronic transitions on 4f-4f orbitals of lanthanides results in their second harmonic generation responses of different strengths, with exhibiting 5.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are divided into two-dimensional (2D) and three-dimensional (3D) structures according to the connection dimension of covalent bonds. 3D COFs have smaller pore size and larger surface area, which would facilitate the separation of small organic molecules with similar structures and properties in capillary electrochromatographic (CEC) separation. However, the application of 3D COFs in CEC is still in its early stages.

View Article and Find Full Text PDF

Uracil DNA glycosylase (UDG) and human alkyladenine DNA glycosylase (hAAG) are the important DNA glycosylases for initiating the repair of DNA damage, and the aberrant expression of DNA glycosylases is closely associated with various diseases, such as Parkinson's disease, several cancers, and human immunodeficiency. The simultaneous detection of UDG and hAAG is helpful for the study of early clinical diagnosis. However, the reported methods for multiple DNA glycosylase assay suffer from the application of an expensive single-molecule instrument, labor-tedious magnetic separation, and complicated design.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) have great potential applications in chromatographic separation. So it is crucial to understand the relationship between the separation ability of COFs and their structures. Here we report a strategy to evaluate the separation ability of three 2D COFs and explore the relationship between separation ability and their molecular structures.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a multifaceted disorder affecting epidemic proportion at global scope. Defective insulin secretion by pancreatic -cells and the inability of insulin-sensitive tissues to respond effectively to insulin are the underlying biology of T2DM. However, circulating biomarkers indicative of early diabetic onset at the asymptomatic stage have not been well described.

View Article and Find Full Text PDF

Chiral covalent organic frameworks (CCOFs) have recently exhibited particularly promising potential as effective chiral stationary phases (CSPs) for open tubular capillary electrochromatography (OT-CEC) enantioseparation. However, it remains difficult to synthesis of CCOFs and preparation of CCOFs coated capillary under mild reaction conditions. In this work, we designed and fabricated a CCOF (CB-DA-COF) with high chemical stability and high specific surface area at room temperature.

View Article and Find Full Text PDF

Molecular structural modifications are utilized to improve the short-circuit current (J ) of high-voltage organic photovoltaics (OPVs). Herein, the classic non-fullerene acceptor (NFA), BTA3, is chosen as a benchmark, with BTA3b containing the linear alkyl chains on the middle core and JC14 fusing thiophene on the benzotriazole (BTA) unit as a contrast. The photovoltaic devices based on J52-F: BTA3b and J52-F: JC14 achieve wider external quantum efficiency responses with band edges of 730 and 800 nm, respectively than that of the device based on J52-F: BTA3 (715 nm).

View Article and Find Full Text PDF

Herein, a novel chiral covalent organic framework, DA-TD COF, with good chemical/thermal stability was synthesized and used as a chiral stationary phase for open-tubular capillary electrochromatography enantioseparation. The DA-TD COF coated capillary exhibited excellent enantioseparation efficiency and its separation efficiency did not show an obvious decrease over 200 runs. Furthermore, the enantioseparation mechanism was studied.

View Article and Find Full Text PDF

Recently, covalent organic frameworks (COFs), owning to their excellent and unique properties, are attracting the attention of numerous researchers in some areas, especially the domain of chromatographic separation. However, the application of hydrazine linkages COFs in open-tubular capillary electrochromatography (OT-CEC) lies in the early stage at present. Herein, a well-crystallized hydrazine-linked COF (Tf-DHzOH) was synthesized successfully from 2,5-dihydroxyterephtalohydrazide and 1,3,5-triformyl-benzene.

View Article and Find Full Text PDF

Environmental quality data sets are typically imbalanced, because environmental pollution events are rarely observed in daily life. Prediction of imbalanced data sets is a major challenge in machine learning. Our recent work has shown deep cascade forest (DCF), as a base learning model, is promising to be recommended for environmental quality prediction.

View Article and Find Full Text PDF

As a class of new porous crystalline materials, covalent organic frameworks (COFs) are attracting the attention of a large number of scientists. Because of their large specific surface area, low density, high stability, and tunable pore size, COFs have been widely applied in many fields, including analytical chemistry. Open-tubular capillary electrochromatography (OT-CEC) is a mode of capillary electrochromatography.

View Article and Find Full Text PDF

In order to understand related pathogenesis of some diseases and design new intracellular drug delivery systems, investigation of pH change in living cells in real time is important. In this paper, a new style of fluorescent silicon nanoparticles (SiNPs) as a pH-sensitive probe and for the visualization of the pH changes in cells was designed and prepared using 4-aminophenol as a reducing agent and -aminoethyl-γ-aminopropyltrimethyl as a silicon source by a one-pot hydrothermal method. It was particularly noteworthy that the fluorescence intensity emitted from the SiNPs positively correlated with the pH value of solutions, making the SiNPs a viable probe used for sensitive sensing of pH.

View Article and Find Full Text PDF

A new 3D noncentrosymmetric mixed-metal sulfate iodate, AgBi(SO)(IO), has been designed based on a 2D iodate of AgBi(IO)via the aliovalent substitution of [IO] groups by [SO] groups. Enhancement of the second harmonic generation response (3.0 × KDP to 3.

View Article and Find Full Text PDF

Abnormal DNA glycosylases are concerned with the aging process as well as numerous pathologies in humans. Herein, a sensitive fluorescence method utilizing target-induced ligation-dependent tricyclic cascade amplification reaction was developed for the detecting DNA glycosylase activity. The presence of DNA glycosylase triggered the cleavage of damaged base in hairpin substrate, successively activating ligation-dependent strand displacement amplification (SDA) and exponential amplification reaction (EXPAR) for the generation of large amount of reporter probes.

View Article and Find Full Text PDF

A smart fluorescent probe DPAS-Cys has been rationally designed based on a typical AIEgen DPAS and an acrylate moiety. The probe DPAS-Cys not only can be used for the detection of cysteine (Cys) selectively with large Stokes shift (200 nm) and relatively low detection limit (2.4 μM), but also shows lipid droplets (LDs) targeting property.

View Article and Find Full Text PDF

Objective: This case-control study aimed to analyze the clinical features and determine the expression of type I interferon-induced genes in systemic lupus erythematosus (SLE) patients harboring the CD11b rs1143679 single-nucleotide polymorphism (SNP) and elucidate whether it is involved in the relapses of SLE.

Methods: One hundred twenty-five relatively inactive SLE patients with SLEDAI scores < 6, including 102 CD11b rs1143679 G allele patients as controls and 23 rs1143679 A allele carriers as cases, were enrolled from the SLE patient specimen bank in the Department of Rheumatology and Immunology. The sample set was retrospectively analyzed for differences in clinical features, and quantitative PCR and Western blot analyses were performed to evaluate the relative expression of type I interferon (IFN)-inducible genes.

View Article and Find Full Text PDF