Publications by authors named "Chen Xiangrong"

Inflammation is a crucial element of immune responses, with pivotal roles in host defenses against pathogens. Comprehensive understanding of the molecular mechanisms underlying inflammation is imperative for developing effective strategies to combat infectious diseases. Here, we conducted a screening analysis and identified enkurin domain-containing protein 1 (ENKD1) as a promising regulator of inflammation.

View Article and Find Full Text PDF

Two-dimensional (2D) magnetic transition metal dichalcogenides have unique electronic properties, ferromagnetism, and tunable properties in low-dimensional systems. In this paper, the structural, electronic, and magnetic properties of the VTe monolayer under different carrier concentrations were investigated using first-principles calculations and Monte Carlo (MC) simulations. It is found that by introducing a suitable number of electrons, the VTe monolayer can undergo a transition from a semiconductor to a half-metal state, with 100% spin polarization.

View Article and Find Full Text PDF

The neutral oxygen catalysis is an electrochemical reaction of the utmost importance in energy generation, storage application, and chemical synthesis. However, the restricted availability of protons poses a challenge to achieving kinetically favorable oxygen catalytic reactions. Here, we alter the interfacial water orientation by adjusting the Brønsted acidity at the catalyst surface, to break the proton transfer limitation of neutral oxygen electrocatalysis.

View Article and Find Full Text PDF

The efficient removal of organic contaminants from high-salinity wastewater is crucial for resource recovery and achieving zero discharge. Nanofiltration (NF) membranes are effective in separating organic compounds and monovalent salts, but they typically exhibit an excessive rejection of divalent salts. Modifying the charge characteristics of NF membranes can improve salt permeation; however, the role of charge spatial distribution in governing salt transport behavior is not fully understood.

View Article and Find Full Text PDF

Mining large-scale functional regions of the genome helps to understand the essence of cellular life. The rapid accumulation of genomic information provides a wealth of material for genomic functional, evolutionary, and structural research. DNA cloning technology is an important tool for understanding, analyzing, and manipulating the genetic code of organisms.

View Article and Find Full Text PDF

Inhibition of the protein-protein interaction between Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) has been recognized as an attractive approach for treating oxidative stress-related diseases. Here, we present a new series of noncovalent Keap1-Nrf2 inhibitors developed by a conformational restriction strategy of our fluorenone-based compounds previously identified by fragment-based drug discovery. The design was guided by X-ray cocrystal structures, and the subsequent optimization process aimed at improving affinity, cellular activity, and metabolic stability.

View Article and Find Full Text PDF

The neuroinflammatory response mediated by microglial activation plays an important role in the secondary nerve injury of traumatic brain injury. The post-transcriptional modification of N6-methyladenosine (m6A) is ubiquitous in the immune response of the central nervous system. The fat mass and obesity (FTO)-related protein catalyzes the demethylation of m6A modifications on mRNA and is widely expressed in various tissues, participating in the regulation of multiple diseases' biological processes.

View Article and Find Full Text PDF

Acylaminoindazole-based inhibitors of CDKL2 were identified via analyses of cell-free binding and selectivity data. Compound was selected as a CDKL2 chemical probe based on its potent inhibition of CDKL2 enzymatic activity, engagement of CDKL2 in cells, and excellent kinome-wide selectivity, especially when used in cells. Compound was designed as a negative control to be used alongside compound in experiments to interrogate CDKL2-mediated biology.

View Article and Find Full Text PDF

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-mediated primary inflammatory myelinopathy of the central nervous system that primarily affects the optic nerve and spinal cord. The aquaporin 4 antibody (AQP4-Ab) is a specific autoantibody marker for NMOSD. Most patients with NMOSD are seropositive for AQP4-Ab, thus aiding physicians in identifying ways to treat NMOSD.

View Article and Find Full Text PDF

Purpose: Thrombospondin-1 (TSP-1), a powerful antiangiogenic agent, is increasingly expressed in mice brain tissues after traumatic brain injury (TBI). However, in the peripheral blood of TBI patients, TSP-1 concentrations have not been identified. This study aimed to determine if TSP-1 measured in the plasma of patients relates to TBI diagnosis and injury severity.

View Article and Find Full Text PDF
Article Synopsis
  • - The study uses advanced simulations to explore the melting temperature and sound velocity of neon under extreme conditions, providing insights into its physical state and storage potential in Earth's deep interior.
  • - Findings indicate that solid neon can stabilize under lower mantle and inner core conditions, and its unique electronic structure prevents abnormal melting in the Earth's temperature and pressure environments.
  • - Neon may help explain low-velocity anomalies in the deep Earth, with MgSiO3 demonstrating a higher capacity to store neon compared to liquid iron, suggesting the lower mantle could act as a natural reservoir for noble gases.
View Article and Find Full Text PDF

Acylaminoindazole-based inhibitors of CDKL2 were identified via analyses of cell-free binding and selectivity data. Compound was selected as a CDKL2 chemical probe based on its potent inhibition of CDKL2 enzymatic activity, engagement of CDKL2 in cells, and excellent kinome-wide selectivity, especially when used in cells. Compound was designed as a negative control to be used alongside compound in experiments to interrogate CDKL2-mediated biology.

View Article and Find Full Text PDF

Two-dimensional ferromagnetic materials with intrinsic half-metallic properties have strong application advantages in nanoscale spintronics. Herein, density functional theory calculations show that monolayer ScCl is a ferromagnetic metallic material when undoped ( = 0), and the transition from metal to half-metal occurs with the continuous doping of holes. On the contrary, as the concentration of doped electrons increases, the system will exhibit metallic characteristics, which is particularly evident from a variation in spin polarizability.

View Article and Find Full Text PDF

Objective: Glioma is one of the most prevalently diagnosed types of primary malignant brain tumors. Glioma stem cells (GSCs) are crucial in glioma recurrence. This study aims to elucidate the mechanism by which extracellular vehicles (EVs) derived from GSCs modulate glycometabolic reprogramming in glioma.

View Article and Find Full Text PDF

Bismuth chalcogenide and its derivatives have been attracting attention in various fields as semiconductors or topological insulators. Inspired by the high piezoelectric properties of Janus BiTeSeS monolayer and the excellent optical absorption properties of the BiX (X = Te, Se, S) monolayers, we theoretically predicted four new-type two-dimensional (2D) monolayers Janus BiXY (X = Te, Se; Y = Te, Se, S) using the first principles combined with density functional theory (DFT). The thermal, dynamic, and mechanical stabilities of Janus BiXY monolayers were confirmed based on molecular dynamics (AIMD) simulations, phonon dispersion, and elastic constants calculations.

View Article and Find Full Text PDF

A superior piezoelectric coefficient and diminutive lattice thermal conductivity are advantageous for the application of a two-dimensional semiconductor in piezoelectric and thermoelectric devices, whereas an imperfect piezoelectric coefficient and large lattice thermal conductivity limit the practical application of the material. In this study, we investigate how the equibiaxial strain regulates the electronic structure, and mechanical, piezoelectric, and thermal transport properties. Tensile strain can deduce the bandgap of the monolayer CrX (X = S, Se, Te), whereas compressive strain has an opposite effect.

View Article and Find Full Text PDF

Background And Objective: Predicting mortality from traumatic brain injury facilitates early data-driven treatment decisions. Machine learning has predicted mortality from traumatic brain injury in a growing number of studies, and the aim of this study was to conduct a meta-analysis of machine learning models in predicting mortality from traumatic brain injury.

Methods: This systematic review and meta-analysis included searches of PubMed, Web of Science and Embase from inception to June 2023, supplemented by manual searches of study references and review articles.

View Article and Find Full Text PDF

Objective: To analyze the risk factors of new adjacent vertebral fractures (AVF) and remote vertebral fractures (RVF) after percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fractures (OVCFs).

Methods: Patients who underwent additional PVP for new OVCFs were enrolled. In addition, we set a 1:1 age-, sex-, surgical segment-, and surgical date-matched control group, in which patients underwent PVP without new OVCFs.

View Article and Find Full Text PDF

Mycotoxins are considered the most threating natural contaminants in food. Among these mycotoxins, aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are the most prominent fungal metabolites that represent high food safety risks, due to their widespread co-occurrence in several food commodities, and their profound toxic effects on humans. Considering the ethical and more humane animal research, the 3Rs (replacement, reduction, and refinement) principle has been promoted in the last few years.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a global public health problem. As an important cause of secondary injury, cerebrovascular reaction can cause secondary bleeding, venous sinus thrombosis, and malignant brain swelling. Recent clinical studies have confirmed that intracranial venous return disorder is closely related to the prognosis of patients, yet the specific molecular mechanism involved in this process is still unclear.

View Article and Find Full Text PDF

Up-conversion nanoparticles (UCNPs), especially single-band bright red UCNPs, have better penetration of biological tissues, absorb less lost energy, and have higher sensitivity and accuracy in the determination of actual biological samples in the field of biosensing. Here, a novel colorimetric and fluorescent dual-channel method based upon an internal filtration effect (IFE) quenching mechanism was proposed for the quantitative analysis of xanthine (XA) by using red UCNPs as fluorescence indicator and 3,3',5,5' -tetramethylbenzidine (TMB) as chromogenic substrate. The sensitivity of the detection system was also enhanced by a cycle signal amplification strategy based on the Fenton reaction.

View Article and Find Full Text PDF

This study aimed to investigate the underlying mechanism of Zuogui Pill in its efficacy against liver cancer, employing a combination of data mining approaches and network pharmacology methods. A novel clustering analysis algorithm was proposed to identify the core gene modules of Zuogui Pill. This algorithm successfully identified 5 core modules, with the first large module comprised of twelve proteins forming a 12-clique, representing the strongest connections among them.

View Article and Find Full Text PDF

Traditional picture books for children come with colourful images and a multitude of elements to attract attention and increase the reading interest of typical-developing (TD) children. However, children with Autism Spectrum Disorder (ASD) are less capable of filtering out unimportant elements in pictures and focusing on social items (e.g.

View Article and Find Full Text PDF

Maize is frequently contaminated with multiple mycotoxins, especially those produced by and . As mycotoxin contamination is a critical factor that destabilizes global food safety, the current review provides an updated overview of the (co-)occurrence of and and (co-)contamination of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) in maize. Furthermore, it summarizes their interactions in maize.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsrct1ohnppmejhh4srk1225fuvvkdem6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once