Publications by authors named "Chen Xiangbin"

Article Synopsis
  • Bismuth telluride materials are popular for thermoelectric applications, but there's a need for better performance, especially at higher temperatures due to a bipolar effect caused by their narrow band gap.
  • This study explores alloying commercial BiSbTe with AgSbTe using advanced techniques, which effectively lowers thermal conductivity and increases electrical conductivity by raising hole carrier concentration.
  • The optimal alloy composition (0.15 wt % AgSbTe) achieved a thermoelectric performance improvement of 20.5% at 393 K and 27.6% between 303 K and 483 K compared to commercial samples.
View Article and Find Full Text PDF

The continuous advancements in studying two-dimensional (2D) materials pave the way for groundbreaking innovations across various industries. In this study, by employing density functional theory calculations, we comprehensively elucidate the electronic structures of MZX (M = Ga and In; Z = Si, Ge, and Sn; X = S, Se, and Te) monolayers for their applications in photocatalytic, thermoelectric, and spintronic fields. Interestingly, GaSiS, GaSiSe, InSiS, and InSiSe monolayers are identified to be efficient photocatalysts for overall water splitting with band gaps close to 2.

View Article and Find Full Text PDF

As a liquid-like material, CuAgSe has high carrier mobility and ultralow lattice thermal conductivity. It undergoes an n-p conduction-type transition during β- to α-phase transition with increasing temperature. Moreover, optimization of the thermoelectric performance of CuAgSe is rather difficult, owing to the two-carrier conduction in this material.

View Article and Find Full Text PDF

The above article, published online on 5 December 2022, on Wiley Online Library (https://onlinelibrary.wiley.com/doi/abs/10.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) is emerging as a new method for the detection of clinically significant copy number variants (CNVs). In this study, we developed and validated rapid CNV-sequencing (rCNV-seq) for clinical application in prenatal diagnosis. Low-pass whole-genome sequencing was performed on PCR libraries prepared from amniocyte genomic DNA.

View Article and Find Full Text PDF

Recent studies have demonstrated structural and functional alterations in Parkinson's disease (PD) with mild cognitive impairment (MCI). However, the topological patterns of functional brain networks in newly diagnosed PD patients with MCI are unclear so far. In this study, we used functional magnetic resonance imaging (fMRI) and graph theory approaches to explore the functional brain network in 45 PD patients with MCI (PD-MCI), 22 PD patients without MCI (PD-nMCI), and 18 healthy controls (HC).

View Article and Find Full Text PDF

For resectable cancer patients, a method that could precisely predict the risk of postoperative recurrence would be crucial for guiding adjuvant treatment. Since T cell receptor (TCR) repertoires had been shown to be closely related to the dynamics of cancers, here we enrolled a cohort of patients to evaluate the potential of TCR repertoires in predicting the prognosis of resectable non-small cell lung cancers. Specifically, TCRβ repertoires were analyzed in surgical tumor tissues and matched adjacent non-tumor tissues from 39 patients enrolled with resectable non-small cell lung cancer, through target enrichment and high-throughput sequencing.

View Article and Find Full Text PDF

The status of T cell receptors (TCRs) repertoire is associated with the occurrence and progress of various diseases and can be used in monitoring the immune responses, predicting the prognosis of disease and other medical fields. High-throughput sequencing promotes the studying in TCR repertoire. The chapter focuses on the whole process of TCR profiling, including DNA extraction, library construction, high-throughput sequencing, and how to analyze data.

View Article and Find Full Text PDF

Rationale: Most gastric cancer patients are diagnosed at mid- to late-stage and lose the chance of radical surgery, medical treatment is especially important to prolong the survival of patients. Apatinib mesylate, which is a small molecule vascular endothelial growth factor receptor 2 tyrosine kinase inhibitor, could be used as antiangiogenesis therapy for gastric cancer.

Patient Concerns: A 67-year-old man sought medical care for upper abdominal discomfort.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) have found widespread medical applications due to their biocompatibility and biodegradability, while further chemical modification requires functional groups on PHA. Halomonas bluephagenesis, a non-model halophilic bacterium serving as a chassis for the Next Generation Industrial Biotechnology (NGIB), was successfully engineered to express heterologous PHA synthase (PhaC) and enoyl coenzyme-A hydratase (PhaJ) from Aeromonas hydrophila 4AK4, along with a deletion of its native phaC gene to synthesize the short chain-co-medium chain-length PHA copolymers, namely poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-3-hydroxyhex-5-enoate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyhex-5-enoate). After optimizations of the expression cassette and ribosomal binding site combined with introduction of endogenous acyl-CoA synthetase (fadD), the resulting recombinant strain H.

View Article and Find Full Text PDF

Objective: High-throughput sequencing based on copy number variation (CNV-seq) is commonly used to detect chromosomal abnormalities including aneuploidy. This study provides evidence for the prevalence of chromosomal abnormalities in target populations.

Methods: A total of 160 samples, including 83 high-risk pregnancies, 37 spontaneous abortions, and 40 suspected genetic disorders, were analyzed by CNV-seq.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) composed of both short-chain-length (SCL) and medium-chain-length (MCL) monomers (SCL-co-MCL PHA) combine the advantages of high strength and elasticity provided by SCL PHA and MCL PHA, respectively. Synthesis of SCL-co-MCL PHA, namely, copolymers of 3-hydroxybutyrate (3HB) and MCL 3-hydroxyalkanoates (3HA) such as 3-hydroxydecanoate (3HD) and longer chain 3HA, has been a challenge for a long time. This study aims to engineer Pseudomonas entomophila for synthesizing P(3HB-co-MCL 3HA) via weakening its β-oxidation pathway combined with insertion of 3HB synthesis pathway consisting of β-ketothiolase (phaA) and acetoacetyl-CoA reductase (phaB).

View Article and Find Full Text PDF

Traditional microbial chassis, including Escherichia coli, Bacillus subtilis, Ralstonia eutropha, and Pseudomonas putida, are grown under neutral pH and mild osmotic pressure for production of chemicals and materials. They tend to be contaminated easily by many microorganisms. To address this issue, next-generation industrial biotechnology employing halophilic Halomonas spp.

View Article and Find Full Text PDF

Halomonas spp. are able to grow under a high salt concentration at alkali pH, they are able to resist contamination by other microbes. Development of Halomonas spp.

View Article and Find Full Text PDF

Phasins are unusual amphiphilic proteins that bind to microbial polyhydroxyalkanoate (PHA) granules in nature and show great potential for various applications in biotechnology and medicine. Despite their remarkable diversity, only the crystal structure of PhaP from Aeromonas hydrophila has been solved to date. Based on the structure of PhaP , homology models of PhaP from Azotobacter sp.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate), short as P(3HB-co-4HB), was successfully produced by engineered Halomonas bluephagenesis TD01 grown in glucose and γ-butyrolactone under open non-sterile conditions. Gene orfZ encoding 4HB-CoA transferase of Clostridium kluyveri was integrated into the genome to achieve P(3HB-co-4HB) accumulation comparable to that of strains encoding orfZ on plasmids. Fed-batch cultivations conducted in 1-L and 7-L fermentors, respectively, resulted in over 70g/L cell dry weight (CDW) containing 63% P(3HB-co-12mol% 4HB) after 48h under non-sterile conditions.

View Article and Find Full Text PDF

To engineer non-model organisms, suitable genetic parts must be available. However, biological parts are often host strain sensitive. It is therefore necessary to develop genetic parts that are functional regardless of host strains.

View Article and Find Full Text PDF

The industrial production of low value-added biological products poses significant challenges due to cost pressures. In recent years, it has been argued that synthetic biology approaches will lead to breakthroughs that eliminate price bottlenecks for the production of a wide range of biological products including bioplastics and biofuels. One significant bottleneck lies in the necessity to break the tough cell walls of microbes in order to release intracellular products.

View Article and Find Full Text PDF

Coordination of shoot photosynthetic carbon fixation with root inorganic nitrogen uptake optimizes plant performance in a fluctuating environment [1]. However, the molecular basis of this long-distance shoot-root coordination is little understood. Here we show that Arabidopsis ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor that regulates growth in response to light [2, 3], is a shoot-to-root mobile signal that mediates light promotion of root growth and nitrate uptake.

View Article and Find Full Text PDF

Although the main genes in rice involved in the biosynthesis of secondary wall components have been characterized, the molecular mechanism underlying coordinated regulation of genes expression is not clear. In this study, we reported a new rice variety, cef1, showed the culm easily fragile (CEF) without other concomitant phenotypes. The CEF1 gene encodes a MYB family transcription factor OsMYB103L, was cloned based on map-based approach.

View Article and Find Full Text PDF

Crop productivity is heavily dependent on the application of nitrogen (N) fertilizers. Increasing N fertilization levels, however, are subject to diminishing returns, quite apart from their deleterious impact on the environment. Improving N use efficiency (NUE) is therefore crucial for development of sustainable agriculture.

View Article and Find Full Text PDF

The deployment of heterosis in the form of hybrid rice varieties has boosted grain yield, but grain quality improvement still remains a challenge. Here we show that a quantitative trait locus for rice grain quality, qGW7, reflects allelic variation of GW7, a gene encoding a TONNEAU1-recruiting motif protein with similarity to C-terminal motifs of the human centrosomal protein CAP350. Upregulation of GW7 expression was correlated with the production of more slender grains, as a result of increased cell division in the longitudinal direction and decreased cell division in the transverse direction.

View Article and Find Full Text PDF

Microbial fermentation is the key to industrial biotechnology. Most fermentation processes are sensitive to microbial contamination and require an energy intensive sterilization process. The majority of microbial fermentations can only be conducted over a short period of time in a batch or fed-batch culture, further increasing energy consumption and process complexity, and these factors contribute to the high costs of bio-products.

View Article and Find Full Text PDF