Publications by authors named "Chen Min-Cheng"

In this study, we describe the urinary quantification of apolipoprotein A II protein (APOA2 protein), a biomarker for the diagnosis of bladder cancer, using an n-type polycrystalline silicon nanowire field-effect transistor (poly-SiNW-FET). The modification of poly-SiNW-FET by magnetic graphene with long-chain acid groups (MGLA) synthesized via Friedel-Crafts acylation was compared with that obtained using short-chain acid groups (MGSA). Compared with MGSA, the MGLA showed a higher immobilization degree and bioactivity to the anti-APOA2 antibody (Ab) due to its lower steric hindrance.

View Article and Find Full Text PDF

For on-site clinical diagnosis of biomolecules, the detection performances of most point-of-care (POC) biosensor devices are limited by undesired cross-detection of other non-analyte proteins in patient serum samples and other complex samples. To conquer this obstacle, this work presents a fully integrated bottom-gate poly-silcion nanowire (polySi NW) biosensor system-on-chip (SoC) to enhance the detection performance of cardiac-specific troponin-I (cTnI) concentration levels in serum samples. By applying proper electrical potential at the bottom gate under polySi NW biosensor, the biosensor response to cTnI biomarker can be improved by at least 16 fold in 50% phantom serum samples.

View Article and Find Full Text PDF

This study proposes a vascular endothelial growth factor (VEGF) biosensor for diagnosing various stages of cervical carcinoma. In addition, VEGF concentrations at various stages of cancer therapy are determined and compared to data obtained by computed tomography (CT) and cancer antigen 125 (CA-125). The increase in VEGF concentrations during operations offers useful insight into dosage timing during cancer therapy.

View Article and Find Full Text PDF

This paper reports a versatile nano-sensor technology using "top-down" poly-silicon nanowire field-effect transistors (FETs) in the conventional Complementary Metal-Oxide Semiconductor (CMOS)-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n type polysilicon nanowire FETs have positive pH sensitivity (100 mV/pH) and sensitive deoxyribonucleic acid (DNA) detection ability (100 pM) at normal system operation voltages.

View Article and Find Full Text PDF