Publications by authors named "Chen Delai"

Damping-off disease in chili ( L.) cultivation is a significant global issue, severely affecting seeds, seedlings, and young plants, regardless of the location of cultivation, whether in greenhouses or open fields. Despite chili being a widely popular vegetable used in various cuisines globally, farmers face challenges in meeting the growing demand due to the extensive damage caused by this disease, ranging from 20 to 85%.

View Article and Find Full Text PDF

Common bunt caused by Kühn is one of the most serious fungal diseases of wheat. The root-microbial associations play key roles in protecting plants against biotic and abiotic factors. Managing these associations offers a platform for improving the sustainability and efficiency of agriculture production.

View Article and Find Full Text PDF

causes common bunt disease in wheat, with severe losses of production yield and seed quality. Metabolomics studies provide detailed information about the biochemical changes at the cell and tissue level of the plants. Ultrahigh-performance liquid chromatography-Q-exactive mass spectrometry (UPLC-QE-MS) was used to examine the changes in wheat grains after infection.

View Article and Find Full Text PDF

Plants often face incompatible growing environments like drought, salinity, cold, frost, and elevated temperatures that affect plant growth and development leading to low yield and, in worse circumstances, plant death. The arsenal of versatile compounds for plant consumption and structure is called metabolites, which allows them to develop strategies to stop enemies, fight pathogens, replace their competitors and go beyond environmental restraints. These elements are formed under particular abiotic stresses like flooding, heat, drought, cold, etc.

View Article and Find Full Text PDF

Alpha-1 antitrypsin deficiency (AATD) is a rare autosomal codominant disease caused by mutations within the SERPINA1 gene. The most prevalent variant in patients is PiZ SERPINA1, containing a single G > A transition mutation. PiZ alpha-1 antitrypsin (AAT) is prone to misfolding, leading to the accumulation of toxic aggregates within hepatocytes.

View Article and Find Full Text PDF

Planarians are widely used as water quality indicator species to provide early warning of harmful pollution in aquatic ecosystems. However, the impact of microplastics on freshwater planarians remains poorly investigated. Here we simulated waterborne microplastic exposure in the natural environments to examine the effect on the antioxidant defense system and microbiota in Dugesia japonica.

View Article and Find Full Text PDF

Tilletia controversa Kühn (TCK) is the causal agent of dwarf bunt of wheat, a destructive disease in wheat-growing regions of the world. The role of Meja, SA and Meja + SA were characterized for their control of TCK into roots, coleoptiles and anthers. The response of the defence genes PR-10a, Catalase, COI1-1, COII-2 and HRin1 was upregulated by Meja, SA and Meja + SA treatments, but Meja induced high level of expression compared to SA and Meja + SA at 1, 2, and 3 weeks in roots and coleoptiles, respectively.

View Article and Find Full Text PDF

Messenger RNA (mRNA) therapeutics have been explored to treat various genetic disorders. Lipid-derived nanomaterials are currently one of the most promising biomaterials that mediate effective mRNA delivery. However, efficiency and safety of this nanomaterial-based mRNA delivery remains a challenge for clinical applications.

View Article and Find Full Text PDF

Wheat is one of the most important staple crops. Tilletia controversa Kühn is the causal agent of wheat dwarf bunt. In this study, a resistant wheat cultivar displayed significantly higher expression of pathogenesis-related genes than a susceptible cultivar at 7 days post inoculation (DPI) with T.

View Article and Find Full Text PDF

One of the most significant challenges in the development of clinically viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. Here, we have synthesized 1,400 degradable lipidoids and evaluate their transfection ability and structure-function activity. We show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations on IV administration to mice (siRNA EC50 values as low as 0.

View Article and Find Full Text PDF

Intracellular protein delivery has potential biotechnological and therapeutic application, but remains technically challenging. In contrast, a plethora of nucleic acid carriers have been developed, with lipid-based nanoparticles (LNPs) among the most clinically advanced reagents for oligonucleotide delivery. Here, we validate the hypothesis that oligonucleotides can serve as packaging materials to facilitate protein entrapment within and intracellular delivery by LNPs.

View Article and Find Full Text PDF

New lipid-like nanomaterials are developed to simultaneously regulate expression of multiple genes. Self-assembled nanoparticles are capable of efficiently encapsulating pDNA and siRNA. These nanoparticles are shown to induce simultaneous gene expression and silencing both in vitro and in vivo.

View Article and Find Full Text PDF

siRNA therapeutics have promise for the treatment of a wide range of genetic disorders. Motivated by lipoproteins, we report lipopeptide nanoparticles as potent and selective siRNA carriers with a wide therapeutic index. Lead material cKK-E12 showed potent silencing effects in mice (ED50 ∼ 0.

View Article and Find Full Text PDF

Rationally designed siRNA delivery materials that are enabled by lipid-modified aminoglycosides are demonstrated. Leading materials identified are able to self-assemble with siRNA into well-defined nanoparticles and induce efficient gene knockdown both in vitro and in vivo. Histology studies and liver function tests reveal that no apparent toxicity is caused by these nanoparticles at doses over two orders of magnitude.

View Article and Find Full Text PDF

Despite efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain unclear. Here we examine cellular uptake of short interfering RNA (siRNA) delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy. We also employed defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions.

View Article and Find Full Text PDF

Degradable, cationic poly(β-amino ester)s (PBAEs) with alkyl side chains are developed for non-viral gene delivery. Nanoparticles formed from these PBAE terpolymers exhibit significantly enhanced DNA transfection potency and resistance to aggregation. These hydrophobic PBAE terpolymers, but not PBAEs lacking alkyl side chains, support interaction with PEG-lipid conjugates, facilitating their functionalization with shielding and targeting moieties and accelerating the in vivo translation of these materials.

View Article and Find Full Text PDF

Islets microencapsulation holds great promise to treat type 1 diabetes. Currently used alginate microcapsules often have islets protruding outside capsules, leading to inadequate immuno-protection. A novel design of microcapsules with core-shell structures using a two-fluid co-axial electro-jetting is reported.

View Article and Find Full Text PDF

The discovery of potent new materials for in vivo delivery of nucleic acids depends upon successful formulation of the active molecules into a dosage form suitable for the physiological environment. Because of the inefficiencies of current formulation methods, materials are usually first evaluated for in vitro delivery efficacy as simple ionic complexes with the nucleic acids (lipoplexes). The predictive value of such assays, however, has never been systematically studied.

View Article and Find Full Text PDF

This article describes a SlipChip-based approach to perform bead-based heterogeneous immunoassays with multiple nanoliter-volume samples. As a potential device to analyze the output of the chemistrode, the performance of this platform was tested using low concentrations of biomolecules. Two strategies to perform the immunoassay in the SlipChip were tested: (1) a unidirectional slipping method to combine the well containing a sample with a series of wells preloaded with reagents and (2) a back-and-forth slipping method to introduce a series of reagents to a well containing the sample by reloading and slipping the well containing the reagent.

View Article and Find Full Text PDF

This paper describes experiments for characterizing mass transfer at the hydrophilic surface of the substrate in a chemistrode. The chemistrode uses microfluidic plugs to deliver pulses of chemicals to a substrate with high temporal resolution, which requires efficient mass transfer between the wetting layer and the hydrophilic surface of the substrate. Here, total internal reflection fluorescence microscopy (TIRFM) was used to image the hydrophilic surface of the substrate as plugs were made to flow over it.

View Article and Find Full Text PDF

Microelectrodes enable localized electrical stimulation and recording, and they have revolutionized our understanding of the spatiotemporal dynamics of systems that generate or respond to electrical signals. However, such comprehensive understanding of systems that rely on molecular signals-e.g.

View Article and Find Full Text PDF

This manuscript describes the effect of interfacial tensions on three-phase liquid-liquid-liquid flow in microfluidic channels and the use of this flow to prevent microfluidic plugs from coalescing. One problem in using microfluidic plugs as microreactors is the coalescence of adjacent plugs caused by the relative motion of plugs during flow. Here, coalescence of reagent plugs was eliminated by using plugs of a third immiscible liquid as spacers to separate adjacent reagent plugs.

View Article and Find Full Text PDF