It has been 10 years since CRISPR/Cas technology was applied to edit the genomes of various organisms. Its ability to produce a double-strand break in a DNA region specified by the researcher started a revolution in bioengineering. Later, the Base Editing (BE) method was developed.
View Article and Find Full Text PDFIn 2019, at the World Economic Forum, DNA data storage was indicated as one of the breakthroughs expected to radically impact the global socio-economic order. Indeed, dry DNA is a relatively stable substance and an extremely capacious information carrier. One gram of DNA can hold up to 455 exabytes, provided that one nucleotide encodes two bits of information.
View Article and Find Full Text PDFPolymerase chain reaction (PCR) is the most widely used method for nucleic acids amplification. To date, a huge number of versatile PCR techniques have been developed. One of the relevant goals is to shorten PCR duration, which can be achieved in several ways.
View Article and Find Full Text PDFCRISPR/Cas technology of genome editing is a powerful tool for making targeted changes in the DNA of various organisms, including plants. The choice of the precise nucleotide sequence (protospacer) in the gene to be edited is important in the design of guide RNA, which can be carried out by specialized software. We review and compare all the known on-line and off-line resources for guide RNA design, with special attention paid to tools capable of searching for off-target edits sites in plant genomes.
View Article and Find Full Text PDFNew approaches to the detection of impaired nucleotides based on the allele specific ligation of a "C probe" followed by rolling circle amplification have been developed. The detection of amplification products was realized by using enzymatic and deoxyribozyme digestion of fluorescently-labeled DNA-RNA-DNA chimeric oligonucleotide structures in cycling probe technology (CPT) in real-time mode.
View Article and Find Full Text PDF