Publications by authors named "Chelsea Weiskerger"

The 2021 revised guidelines of the World Health Organization recommend monitoring the quality of sand in addition to water at recreational beaches. This review provides background information about the types of beaches, the characteristics of sand, and the microbiological parameters that should be measured. Analytical approaches are described for quantifying fungi and fecal indicator bacteria from beach sand.

View Article and Find Full Text PDF

River water is an essential human resource that may be contaminated with hazardous microorganisms. However, the risk of yeast infection through river water exposure is unclear because it is highly dependant on individual susceptibility and has therefore not been well-studied, to date. To evaluate this undefined risk, we analysed the fungal communities in less polluted (LP) and highly polluted (HP) river water, as determined using principal coordinate analysis of pollution indicators.

View Article and Find Full Text PDF

Beach sand and water have both shown relevance for human health and their microbiology have been the subjects of study for decades. Recently, the World Health Organization recommended that recreational beach sands be added to the matrices monitored for enterococci and Fungi. Global climate change is affecting beach microbial contamination, via changes to conditions like water temperature, sea level, precipitation, and waves.

View Article and Find Full Text PDF

Beaches along the Great Lakes shorelines are important recreational and economic resources. However, contamination at the beaches can threaten their usage during the swimming season, potentially resulting in beach closures and/or advisories. Thus, understanding the dynamics that control nearshore water quality is integral to effective beach management.

View Article and Find Full Text PDF

Fecal indicator organisms (FIOs), such as Escherichia coli and enterococci, are often used as surrogates of contamination in the context of beach management; however, bacteriophages may be more reliable indicators than FIO due to their similarity to viral pathogens in terms of size and persistence in the environment. In the past, mechanistic modeling of environmental contamination has focused on FIOs, with virus and bacteriophage modeling efforts remaining limited. In this paper, we describe the development and application of a fate and transport model of somatic and F-specific coliphages for the Washington Park beach in Lake Michigan, which is affected by riverine outputs from the nearby Trail Creek.

View Article and Find Full Text PDF

Although infectious disease risk from recreational exposure to waterborne pathogens has been an active area of research for decades, beach sand is a relatively unexplored habitat for the persistence of pathogens and fecal indicator bacteria (FIB). Beach sand, biofilms, and water all present unique advantages and challenges to pathogen introduction, growth, and persistence. These dynamics are further complicated by continuous exchange between sand and water habitats.

View Article and Find Full Text PDF

Increased emphasis on protection of recreational water quality has led to extensive use of fecal indicator bacteria monitoring of coastal swimming waters in recent years, allowing for long-term, widespread retrospective studies. These studies are especially important for tracking environmental changes and perturbations in regional waters. We show that E.

View Article and Find Full Text PDF

Distributional patterns across the United States of five avian community breeding-season characteristics--community biomass, richness, constituent species' vulnerability to extirpation, percentage of constituent species' global abundance present in the community (conservation index, CI), and the community's position along the ecological gradient underlying species composition (principal curve ordination score, PC--were described, their covariation was analyzed, and projected effects of climate change on the characteristics and their covariation were modeled. Higher values of biomass, richness, and CI were generally preferred from a conservation perspective. However, higher values of these characteristics often did not coincide geographically; thus regions of the United States would differ in their value for conservation depending on which characteristic was chosen for setting conservation priorities.

View Article and Find Full Text PDF