Publications by authors named "Chelsea Snyder"

Chronic hepatitis B (CHB) is a global health care challenge and a major cause of liver disease. To find new therapeutic avenues with a potential to functionally cure chronic Hepatitis B virus (HBV) infection, we performed a focused screen of epigenetic modifiers to identify potential inhibitors of replication or gene expression. From this work we identified isonicotinic acid inhibitors of the histone lysine demethylase 5 (KDM5) with potent anti-HBV activity.

View Article and Find Full Text PDF
Article Synopsis
  • The NCoR corepressor is important for regulating gene expression by both nuclear receptors and non-receptor transcription factors, with different variants produced by alternative mRNA splicing having unique biological effects.
  • The NCoRω variant inhibits fat cell formation (adipogenesis) and its deletion in mice leads to increased fat in the liver, weight gain, and improved glucose tolerance on a high-fat diet, while NCoRδ shows the opposite effects.
  • Both splice variants influence a range of metabolic pathways related to fats, carbohydrates, and amino acids, highlighting how they work both separately and together to impact energy storage and usage in the body.
View Article and Find Full Text PDF

Pharmaceutic products designed to perturb the function of epigenetic modulators have been approved by regulatory authorities for treatment of advanced cancer. While the predominant effort in epigenetic drug development continues to be in oncology, non-oncology indications are also garnering interest. A survey of pharmaceutical companies was conducted to assess the interest and concerns for developing small molecule direct epigenetic effectors (EEs) as medicines.

View Article and Find Full Text PDF

We describe here the anti-HBV activity of natural and synthetic retinoids in primary human hepatocytes (PHHs). The most potent compounds inhibited HBsAg, HBeAg, viral RNA and DNA production by HBV infected cells with EC values ranging from 0.4 to 2.

View Article and Find Full Text PDF

Neurotoxicity is a major concern during drug development, and together with liver and cardio-toxicity, it is one of the main causes of clinical drug attrition. Current pre-clinical models may not sufficiently identify and predict the risk for central or peripheral nervous system toxicity. One such example is clinically dose-limiting neuropathic effects after the administration of chemotherapeutic agents.

View Article and Find Full Text PDF

Background: SMRT and NCoR are corepressor paralogs that help mediate transcriptional repression by a variety of transcription factors, including the nuclear hormone receptors. The functions of both corepressors are extensively diversified in mice by alternative mRNA splicing, generating a series of protein variants that differ in different tissues and that exert different, even diametrically opposite, biochemical and biological effects from one another.

Results: We report here that the alternative splicing previously reported for SMRT appears to be a relatively recent evolutionary phenomenon, with only one of these previously identified sites utilized in a teleost fish and a limited additional number of the additional known sites utilized in a bird, reptile, and marsupial.

View Article and Find Full Text PDF

Alternative mRNA splicing diversifies the products encoded by the NCoR and SMRT corepressor loci. There is a programmed alteration in NCoR mRNA splicing during adipocyte differentiation from an NCoRω isoform, which contains three nuclear receptor interaction domains, to an NCoRδ isoform that contains two nuclear receptor interaction domains. This alternative mRNA splicing of NCoR has profound effects on adiposity and on diabetes in mouse models.

View Article and Find Full Text PDF

Alternative mRNA splicing is an important means of diversifying function in higher eukaryotes. Notably, both NCoR and SMRT corepressors are subject to alternative mRNA splicing, yielding a series of distinct corepressor variants with highly divergent functions. Normal adipogenesis is associated with a switch in corepressor splicing from NCoRω to NCoRδ, which appears to help regulate this differentiation process.

View Article and Find Full Text PDF

Estrogen receptors (ERs) are hormone-regulated transcription factors that regulate key aspects of reproduction and development. ERs are unusual in that they do not typically repress transcription in the absence of hormone but instead possess otherwise cryptic repressive functions that are revealed upon binding to certain hormone antagonists. The roles of corepressors in the control of these aspects of ER function are complex and incompletely understood.

View Article and Find Full Text PDF

Prothoracicotropic hormone (PTTH) is a homodimeric brain peptide hormone that positively regulates the production of ecdysteroids by the prothoracic gland of Lepidoptera and probably other insects. PTTH was first purified from heads of adult domestic silkworms, Bombyx mori. Prothoracic glands of Bombyx and Manduca sexta undergo apoptosis well before the adult stage is reached, raising the recurring question of PTTH function at these later stages.

View Article and Find Full Text PDF