Publications by authors named "Chelsea L Price"

The evaporation rate and corresponding vapor pressure of dicarboxylic acids have been the subject of numerous scientific studies over the years, with reported values spanning several orders of magnitude. Recent work has identified the importance of considering the phase state of the material during evaporation, likely accounting for some of the variability in measured vapor pressures. In the homologous series of dicarboxylic acids, the phase state under dry conditions may be crystalline or amorphous, with particles of odd-carbon-numbered acids exhibiting tendencies to remain amorphous and spherical.

View Article and Find Full Text PDF

The partitioning of semivolatile organic molecules between condensed phases and the vapor phase has broad application across a range of scientific disciplines, with significant impacts in atmospheric chemistry for regulating the evolving composition of aerosol particles. Vapor partitioning depends on the molecular interactions and phase state of the condensed material and shows a well-established dependence on temperature. The phase state of solid organic material is not always well-defined, and many examples can be found for the formation of amorphous subcooled liquid states rather than crystalline solids.

View Article and Find Full Text PDF

Brown carbon aerosol in the atmosphere contain light-absorbing chromophores that influence the optical scattering properties of the particles. These chromophores may be hydrophobic, such as PAHs, or water soluble, such as nitroaromatics, imidazoles, and other conjugated oxygen-rich molecules. Water-soluble chromophores are expected to exist in aqueous solution in the presence of sufficient water and will exhibit physical properties (e.

View Article and Find Full Text PDF

The hygroscopicity of respiratory aerosol determines their particle size distribution and regulates solute concentrations to which entrained microorganisms are exposed. Here, we report the hygroscopicity of simulated lung fluid (SLF) particles. While the response of aqueous particles follow simple mixing rules based on composition, we observe phase hysteresis with increasing and decreasing relative humidity (RH) and clear uptake of water prior to deliquescence.

View Article and Find Full Text PDF

Atmospheric aerosol particles are commonly complex, aqueous organic-inorganic mixtures, and accurately predicting the properties of these particles is essential for air quality and climate projections. The prevailing assumption is that aqueous organic-inorganic aerosols exist predominately with liquid properties and that the hygroscopic inorganic fraction lowers aerosol viscosity relative to the organic fraction alone. Here, in contrast to those assumptions, we demonstrate that increasing inorganic fraction can increase aerosol viscosity (relative to predictions) and enable a humidity-dependent gel phase transition through cooperative ion-molecule interactions that give rise to long-range networks of atmospherically relevant low-mass oxygenated organic molecules (180 to 310 Da) and divalent inorganic ions.

View Article and Find Full Text PDF

Single-particle trapping is an effective strategy to explore the physical and optical properties of aerosol with high precision. Laser-based methods are commonly used to probe the size, optical properties, and composition of nonlight-absorbing droplets in optical and electrodynamic traps. However, these methods cannot be applied to droplets containing photoactive chromophores, and thus, single-particle methods have been restricted to only a subset of atmospherically relevant particle compositions.

View Article and Find Full Text PDF