Publications by authors named "Chelsea K L Gordon"

Although antibodies are a powerful tool for molecular biology and clinical diagnostics, there are many emerging applications for which nucleic acid-based aptamers can be advantageous. However, generating high-quality aptamers with sufficient affinity and specificity for biomedical applications is a challenging feat for most research laboratories. In this , we describe four techniques developed in our laboratory to accelerate the discovery of high-quality aptamer reagents that can achieve robust binding even for challenging molecular targets.

View Article and Find Full Text PDF

Base-modified aptamers that incorporate non-natural chemical moieties can achieve greatly improved affinity and specificity relative to natural DNA or RNA aptamers. However, conventional methods for generating base-modified aptamers require considerable expertise and resources. In this work, we have accelerated and generalized the process of generating base-modified aptamers by combining a click-chemistry strategy with a fluorescence-activated cell sorting (FACS)-based screening methodology that measures the affinity and specificity of individual aptamers at a throughput of ∼10 per hour.

View Article and Find Full Text PDF

An aptamer reagent that can switch its binding affinity in a pH-responsive manner would be highly valuable for many biomedical applications including imaging and drug delivery. Unfortunately, the discovery of such aptamers is difficult and only a few have been reported to date. Here we report the first experimental strategy for generating pH-responsive aptamers through direct selection.

View Article and Find Full Text PDF