Publications by authors named "Chelsea Gerada"

Autophagy is a cellular degradation and recycling system, which can interact with components of innate immune signalling pathways to enhance pathogen clearance, in both immune and nonimmune cells. Whilst this interaction is often beneficial for pathogen clearance, it can have varying outcomes in regard to tumorigenesis. Autophagy and the innate immune response can have both pro- and antitumorigenic effects at different stages of tumorigenesis due to the plastic nature of the tumour microenvironment (TME).

View Article and Find Full Text PDF

Varicella zoster virus (VZV) is the causative agent of chickenpox (varicella) and shingles (herpes zoster). VZV and other members of the herpesvirus family are distinguished by their ability to establish a latent infection, with the potential to reactivate and spread virus to other susceptible individuals. This lifelong relationship continually subjects VZV to the host immune system and as such VZV has evolved a plethora of strategies to evade and manipulate the immune response.

View Article and Find Full Text PDF

Immune regulation of alphaherpesvirus latency and reactivation is critical for the control of virus pathogenesis. This is evident for herpes simplex virus 1 (HSV-1), where cytotoxic T lymphocytes (CTLs) prevent viral reactivation independent of apoptosis induction. This inhibition of HSV-1 reactivation has been attributed to granzyme B cleavage of HSV infected cell protein 4 (ICP4); however, it is unknown whether granzyme B cleavage of ICP4 can directly protect cells from CTL cytotoxicity.

View Article and Find Full Text PDF

There are many facets of varicella-zoster virus (VZV) pathogenesis that are not fully understood, such as the mechanisms involved in the establishment of lifelong latency, reactivation, and development of serious conditions like postherpetic neuralgia (PHN). Virus-encoded modulation of apoptosis has been suggested to play an important role in these processes. VZV open reading frame 63 (ORF63) has been shown to modulate apoptosis in a cell-type-specific manner, but the impact of ORF63 on cell death pathways has not been examined in isolation in the context of human cells.

View Article and Find Full Text PDF