Publications by authors named "Chellapilla Bharadwaj"

DNA polymorphisms QTL analysis in crops is a valuable tool to study the genetic basis of complex traits in agricultural plants. Candidate gene for abiotic (salinity) stress was spotted in the QTL region spanning CaLG03 and CaLG06 in our previous study. In continuity to the same, we have picked up QTL-associated Cicer arietinum RD22 (CaRD22) gene which belongs to BURP-domain-containing group of proteins (BURPs) and studied its expression patterns in salinity-tolerant (ICCV10) and susceptible (DCP92-3) genotypes of chickpea.

View Article and Find Full Text PDF

Inter-specific hybridization is a key strategy in modern crop improvement, aiming to integrate desirable traits from wild species into cultivated backgrounds. This study delves into the evaluation and identification of advanced inter-specific derivatives (IDs) derived from crosses of cultivated chickpea with and . The primary aim was to incorporate desirable yield enhancement traits, disease resistance, and nutritional quality traits into cultivated chickpea.

View Article and Find Full Text PDF

Chickpea (Cicer arietinum L.)-an important legume crop cultivated in arid and semiarid regions-has limited genetic diversity. Efforts are being undertaken to broaden its diversity by utilizing its wild relatives, which remain largely unexplored.

View Article and Find Full Text PDF

Chickpea, being an important grain legume crop, is often confronted with the adverse effects of high temperatures at the reproductive stage of crop growth, drastically affecting yield and overall productivity. The current study deals with an extensive evaluation of chickpea genotypes, focusing on the traits associated with yield and their response to heat stress. Notably, we observed significant variations for these traits under both normal and high-temperature conditions, forming a robust basis for genetic research and breeding initiatives.

View Article and Find Full Text PDF

The functional significance and evolutionary relationships of BURP domain-containing genes unique to plants is of interest. Network analysis reveals different associations of BURP proteins with other proteins and functional terms, throwing light on their involvement in various biological processes and pathways. The gene expression data reveals that BURP genes are affected by salinity stress, reflecting diverse expression patterns in roots and shoots.

View Article and Find Full Text PDF

Professor Rajeev K. Varshney's transformative impact on crop genomics, genetics, and agriculture is the result of his passion, dedication, and unyielding commitment to harnessing the potential of genomics to address the most pressing challenges faced by the global agricultural community. Starting from a small town in India and reaching the global stage, Professor Varshney's academic and professional trajectory has inspired many scientists active in research today.

View Article and Find Full Text PDF

The assessment of the optimum harvesting stage is a prerequisite to evaluating the performance of new citrus genotypes. The intrinsic and extrinsic fruit quality traits of citrus fruits change throughout their developmental process; therefore, to ensure the highest quality, the fruit must be harvested at an appropriate stage of maturity. The biochemical changes in terms of total soluble solids (TSS), titratable acidity (TA), TSS/TA ratio, BrimA (Brix minus acidity), and ascorbic acid, in addition to the organoleptic acceptability of 16 new interspecific citrus hybrids, were evaluated in New Delhi (India) during the H1-H8 harvesting stage at 15-day intervals to standardize the optimum harvesting stage.

View Article and Find Full Text PDF

Horsegram ( [Lam.] Verdc.) is an underutilized pulse crop primarily cultivated in South Asian countries like India, Nepal, and Sri Lanka.

View Article and Find Full Text PDF

Identifying a congenially targeted production environment and understanding the effects of genotype by environmental interactions on the adaption of chickpea genotypes is essential for achieving an optimal yield stability. Different models like additive main effect and multiplicative interactions (AMMI 1, AMM2), weighted average absolute scores of BLUPs (WAASB), and genotype plus genotype-environment (GGE) interactions were used to understand their suitability in the precise estimation of variance and their interaction. Our experiment used genotypes that represent the West Asia-North Africa (WANA) region.

View Article and Find Full Text PDF

The application of biocontrol agents in farm operations for pest control programs is gaining priority and preference globally. Effective delivery, infectivity of the biocontrol agents, and quality shelf-life products containing these bioagents are vital parameters responsible for the success of biopesticides under field conditions. In the present study, moisture-retaining bio-insecticidal dustable powder formulation (SaP) of () infective juveniles (IJs) was developed and assessed for its shelf life, physicochemical profile, and bio-efficacy against subterranean termite under field conditions.

View Article and Find Full Text PDF

Chickpea ( L.), the world's second most consumed legume crop, is cultivated in more than 50 countries around the world. It is a boon for diabetics and is an excellent source of important nutrients such as vitamins A, C, E, K, B1-B3, B5, B6, B9 and minerals (Fe, Zn, Mg and Ca) which all have beneficial effects on human health.

View Article and Find Full Text PDF

The development of genomic selection (GS) methods has allowed plant breeding programs to select favorable lines using genomic data before performing field trials. Improvements in genotyping technology have yielded high-dimensional genomic marker data which can be difficult to incorporate into statistical models. In this paper, we investigated the utility of applying dimensionality reduction (DR) methods as a pre-processing step for GS methods.

View Article and Find Full Text PDF

In developing a based biocontrol program for wilt disease in chickpea, the choice of the quality formulation is imperative. In the present study, two types of formulations powder for seed treatment (TvP) and tablet for direct application (TvT), employing as the biocontrol agent, were evaluated for their ability to control chickpea wilt under field conditions at three dosages recommended (RD), double of recommended (DD) and half of recommended (1/2 RD). A screening study for the antagonistic fungi strains based on volatile and non-volatile bioassays revealed that ITCC 7764 has the most potential among the five strains tested (ITCC 6889, ITCC 7204, ITCC 7764, ITCC 7847, ITCC 8276), which was then used to develop the TvP and TvT formulations.

View Article and Find Full Text PDF

Micronutrient malnutrition is a serious concern in many parts of the world; therefore, enhancing crop nutrient content is an important challenge. Chickpea ( L.), a major food legume crop worldwide, is a vital source of protein and minerals in the vegetarian diet.

View Article and Find Full Text PDF

Chickpea yield is severely affected by drought stress, which is a complex quantitative trait regulated by multiple small-effect genes. Identifying genomic regions associated with drought tolerance component traits may increase our understanding of drought tolerance mechanisms and assist in the development of drought-tolerant varieties. Here, a total of 187 F recombinant inbred lines (RILs) developed from an interspecific cross between drought-tolerant genotype GPF 2 () and drought-sensitive accession ILWC 292 () were evaluated to identify quantitative trait loci (QTLs) associated with drought tolerance component traits.

View Article and Find Full Text PDF

'QTL-hotspot' is a genomic region on linkage group 04 (CaLG04) in chickpea (Cicer arietinum) that harbours major-effect quantitative trait loci (QTLs) for multiple drought-adaptive traits, and it therefore represents a promising target for improving drought adaptation. To investigate the mechanisms underpinning the positive effects of 'QTL-hotspot' on seed yield under drought, we introgressed this region from the ICC 4958 genotype into five elite chickpea cultivars. The resulting introgression lines (ILs) and their parents were evaluated in multi-location field trials and semi-controlled conditions.

View Article and Find Full Text PDF

Multidrug and toxic compound extrusion (MATE) transporters comprise a multigene family that mediates multiple functions in plants through the efflux of diverse substrates including organic molecules, specialized metabolites, hormones, and xenobiotics. MATE classification based on genome-wide studies remains ambiguous, likely due to a lack of large-scale phylogenomic studies and/or reference sequence datasets. To resolve this, we established a phylogeny of the plant MATE gene family using a comprehensive kingdom-wide phylogenomic analysis of 74 diverse plant species.

View Article and Find Full Text PDF

Advancements in sequencing, genotyping, and computational technologies during the last decade (2011-2020) enabled new forward-genetic approaches, which subdue the impediments of precise gene mapping in varied crops. The modern crop improvement programs rely heavily on two major steps-trait-associated QTL/gene/marker's identification and molecular breeding. Thus, it is vital for basic and translational crop research to identify genomic regions that govern the phenotype of interest.

View Article and Find Full Text PDF

The Translational Chickpea Genomics Consortium (TCGC) was set up to increase the production and productivity of chickpea ( L.). It represents research institutes from six major chickpea growing states (Madhya Pradesh, Maharashtra, Andhra Pradesh, Telangana, Karnataka and Uttar Pradesh) of India.

View Article and Find Full Text PDF

Unlabelled: LncRNAs (long noncoding RNAs) are 200 bp length crucial RNA molecules, lacking coding potential and having important roles in regulating gene expression, particularly in response to abiotic stresses. In this study, we identified salt stress-induced lncRNAs in chickpea roots and predicted their intricate regulatory roles. A total of 3452 novel lncRNAs were identified to be distributed across all 08 chickpea chromosomes.

View Article and Find Full Text PDF

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding.

View Article and Find Full Text PDF

Heat stress during reproductive stages has been leading to significant yield losses in chickpea (Cicer arietinum L.). With an aim of identifying the genomic regions or QTLs responsible for heat tolerance, 187 F8 recombinant inbred lines (RILs) derived from the cross GPF 2 (heat tolerant) × ILWC 292 (heat sensitive) were evaluated under late-sown irrigated (January-May) and timely-sown irrigated environments (November-April) at Ludhiana and Faridkot in Punjab, India for 13 heat tolerance related traits.

View Article and Find Full Text PDF

Unravelling the genetic architecture underlying yield components and agronomic traits is important for enhancing crop productivity. Here, a recombinant inbred line (RIL) population, developed from ICC 4958 and DCP 92-3 cross, was used for constructing linkage map and QTL mapping analysis. The RIL population was genotyped using a high-throughput Axiom®CicerSNP array, which enabled the development of a high-density genetic map consisting of 3,818 SNP markers and spanning a distance of 1064.

View Article and Find Full Text PDF