Herein we synthesized a novel structure of mesoporous TiO decorated on 1D ZnO nanorods for environmental remediation. The effect of mesoporous TiO over 1D nanorods were investigated. The phase transitions of nanocomposite were confirmed by powder diffraction analysis.
View Article and Find Full Text PDFThere is an urgent need to develop in situ sensors that monitor the continued release of H2S from biological systems to understand H2S-related pathology and pharmacology. For this purpose, we have developed a molybdenum disulfide supported double-layered zinc cobaltite modified carbon cloth electrode (MoS2-ZnCo2O4-ZnCo2O4) based electrocatalytic sensor. The results of our study suggest that the MoS2-ZnCo2O4-ZnCo2O4 electrode has excellent electrocatalytic ability to oxidize H2S at physiological pH, in a minimized overpotential (+0.
View Article and Find Full Text PDFThe BiFeO/VO has been successfully synthesized by simple annealing of BiFeO nanoplates and VO nanoflower. The phase, structural, optical properties and chemical state of the BiFeO, VO and different composition of BiFeO/VO samples were comparatively characterized by various spectroscopic and microscopic techniques. The prepared catalyst exhibits unique photo catalytic and post-oxidation/reduction ability for removal of various (MB, Phenol, CV, RhB) water organic pollutants.
View Article and Find Full Text PDFExtending the absorption to the visible region by tuning the optical band-gap of semiconductors and preventing charge carrier recombination are important parameters to achieve a higher efficiency in the field of photocatalysis. The inclusion of reduced graphene oxide (rGO) support in photocatalysts is one of the key strategies to address the above-mentioned issues. In this study, rGO supported AgI-mesoTiO2 photocatalysts were synthesized using a sonochemical approach.
View Article and Find Full Text PDFZinc oxide (ZnO) nanostructures of various morphologies were produced in an aqueous system, with pyridine as a shape-directing agent. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) revealed hexagonal wurtzite crystal structure. Variation in surface morphology was analyzed using transmission electron microscopy (TEM).
View Article and Find Full Text PDF