Publications by authors named "Chellaiah M"

Methylsulfonylmethane (MSM) is a naturally occurring anti-inflammatory compound that effectively treats multiple degenerative diseases such as osteoarthritis and acute pancreatitis. Our previous studies have demonstrated the ability of MSM to differentiate stem cells from human exfoliated deciduous (SHED) teeth into osteoblast-like cells. This study examined the systemic effect of MSM in 36-week-old aging C57BL/6 female mice by injecting MSM for 13 weeks.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) signaling regulates phosphorylation of L-plastin, which is involved in forming the nascent sealing zone, a precursor zone for the matured sealing ring. This study aimed to illustrate the molecular mechanisms of L-plastin phosphorylation and the subsequent formation of the nascent sealing zone in osteoclasts treated with TNF-α. Here, we report that anti-TNF-receptor 1, inhibitors of signaling proteins (Src, PI3-K, Rho, and Rho-kinase), and siRNA of TRAF-6 attenuated the phosphorylation of LPL and filamentous actin content significantly in the presence of TNF-α.

View Article and Find Full Text PDF

L-plastin (LPL) was identified as a potential regulator of the actin-bundling process involved in forming nascent sealing zones (NSZs), which are precursor zones for mature sealing zones. TAT-fused cell-penetrating small molecular weight LPL peptide (TAT- MARGSVSDEE, denoted as an inhibitory LPL peptide) attenuated the formation of NSZs and impaired bone resorption in vitro in osteoclasts. Also, the genetic deletion of LPL in mice demonstrated decreased eroded perimeters and increased trabecular bone density.

View Article and Find Full Text PDF

Background: Lipopolysaccharide (LPS) is an endotoxin and a vital component of gram-negative bacteria's outer membrane. During gram-negative bacterial sepsis, LPS regulates osteoclast differentiation and activity, in addition to increasing inflammation. This study aimed to investigate how LPS regulates osteoclast differentiation of RAW 264.

View Article and Find Full Text PDF

Aim: The Cluster of differentiation 44 (CD44) transmembrane protein is cleaved by γ-secretase, the inhibition of which blocks CD44 cleavage. This study aimed to determine the biological consequence of CD44 cleavage and its potential interaction with Runt-related transcription factor (RUNX2) in a sequence-specific manner in PC3 prostate cancer cells.

Methods: Using full-length and C-terminal deletion constructs of CD44-ICD (D1-D5) expressed as stable green fluorescent protein-fusion proteins in PC3 cells, we located possible RUNX2-binding sequences.

View Article and Find Full Text PDF

Background: Periodontitis is the inflammation of the tooth-supporting structures and is one of the most common diseases of the oral cavity. The outcome of periodontal infections is tooth loss due to a lack of alveolar bone support. Osteoclasts are giant, multi-nucleated, and bone-resorbing cells that are central for many osteolytic diseases, including periodontitis.

View Article and Find Full Text PDF

Excessive bone loss occurs in inflammatory disorders such as periodontitis and osteoporosis. The underlying mechanism is related to the differentiation of macrophages into multinucleated giant osteoclasts and their bone resorptive activity. C-Phycocyanin (C-PC) is a phycobiliprotein extracted from the blue-green algae, which has been shown to have various pharmacological effects.

View Article and Find Full Text PDF

Bone resorption requires the formation of complex, actin-rich cytoskeletal structures. During the early phase of sealing ring formation by osteoclasts, L-plastin regulates actin-bundling to form the nascent sealing zones (NSZ). Here, we show that L-plastin knockout mice produce osteoclasts that are deficient in the formation of NSZs, are hyporesorptive, and make superficial resorption pits in vitro.

View Article and Find Full Text PDF

Methylsulfonylmethane (MSM) is a naturally occurring, sulfate-containing, organic compound. It has been shown to stimulate the differentiation of mesenchymal stem cells into osteoblast-like cells and bone formation. In this study, we investigated whether MSM influences the differentiation of stem cells from human exfoliated deciduous teeth (SHED) into osteoblast-like cells and their osteogenic potential.

View Article and Find Full Text PDF

Background: Expression of CD44 receptor is associated with the onset of several tumors. The intracellular domain of CD44 (CD44-ICD) has been implicated as a co-transcription factor for RUNX2 in the regulation of expression of MMP-9 in breast carcinoma cells. Previous studies from our laboratory demonstrated the role of CD44 in migration and invasion of PC3 prostate cells through activation of MMP-9.

View Article and Find Full Text PDF

We have recently demonstrated that a small molecular weight amino-terminal peptide of L-plastin (10 amino acids; "MARGSVSDEE") suppressed the phosphorylation of endogenous L-plastin. Therefore, the formation of nascent sealing zones (NSZs) and bone resorption are reduced. The aim of this study was to develop a biodegradable and biocompatible PLGA nanocarrier that could be loaded with the L-plastin peptide of interest and determine the efficacy in osteoclast cultures.

View Article and Find Full Text PDF

Statement Of Problem: Allografts with osteoinduction potential are widely used to augment bone in surgical and prosthetic rehabilitations. However, osteoinduction potential varies among commercially available allografts. Donor bones are derived from different embryonic origins, either the neural crest or mesoderm.

View Article and Find Full Text PDF

Sealing ring formation is a requirement for osteoclast function. We have recently identified the role of an actin-bundling protein L-plastin in the assembly of nascent sealing zones (NSZs) at the early phase of sealing ring formation in osteoclasts. TNF-α signaling regulates this actin assembly by the phosphorylation of L-plastin on serine -5 and -7 residues at the amino-terminal end.

View Article and Find Full Text PDF

The process of sealing ring formation requires major actin filament reorganization. We previously demonstrated that an actin-bundling protein L-plastin has a role in the cross-linking of actin filaments into tight bundles and forms actin aggregates (denoted as nascent sealing zones). These nascent sealing zones mature into fully functional sealing rings.

View Article and Find Full Text PDF

Studies have shown that a subgroup of tumor cells possess stemness characteristics having self-renewal capacity and the ability to form new tumors. We sought to identify the plausible stemness factor that determines the "molecular signature" of prostate cancer (PCa) cells derived from different metastases (PC3, PCa2b, LNCaP, and DU145) and whether androgen receptor (AR) influences the maintenance of stemness features. Here we show sex-determining region Y (SRY)-box 2 (SOX2) as a putative stem cell marker in PC3 PCa cells and not in DU145, PCa2b, or LNCaP cells.

View Article and Find Full Text PDF

CD44 is a cell surface adhesion receptor that is highly expressed in many cancers and regulates metastasis via recruitment of CD44 to the cell surface. Its interaction with appropriate extracellular matrix ligands promotes the migration and invasion processes involved in metastases. It was originally identified as a receptor for hyaluronan or hyaluronic acid and later to several other ligands including, osteopontin (OPN), collagens, and matrix metalloproteinases.

View Article and Find Full Text PDF

Background: That citrate is a major indispensible component of bone in humans and in all osteovertebrates has been known for about seventy-five years. Yet, its role and importance in the structure and function of bone and bone formation have remained unknown. However, recent studies have identified that citrate is a major and essential component of the apatite/collagen structure of bone; and that the biomechanical properties of bone (e.

View Article and Find Full Text PDF

Background: It has been known for more than 70 years that citrate is a major component of bone; comprising 1-2% weight of bone, and a concentration that is ~5-25-fold greater than the citrate concentration of most other tissues. This relationship exists in humans and in all vertebrates; which reveals that it is an indispensible and essential structural/functional component of bone. However, its implications relating to the structure and properties of bone, to the process of bone formation and regeneration, to bone disorders, and other issues have remained largely unknown and unaddressed.

View Article and Find Full Text PDF

Citrate is a major component of bone in all vertebrates, but its implications in bone have remained largely unknown. Recent studies identified that citrate is incorporated into the structure of the hydroxyapatite nanocrystal/collagen complex; and is essential for the important biomechanical properties of bone. This raises the important question, "What is the source of citrate for incorporation into bone?"; A question that heretofore had remained unresolved.

View Article and Find Full Text PDF

Osteopontin and MMP9 are implicated in angiogenesis and cancer progression. The objective of this study is to gain insight into the molecular mechanisms underlying angiogenesis, and to elucidate the role of osteopontin in this process. We report here that osteopontin/αvβ3 signaling pathway which involves ERK1/2 phosphorylation regulates the expression of VEGF.

View Article and Find Full Text PDF

CD44, MT1-MMP, and MMP9 are implicated in the migration of osteoclast and bone resorption. This study was designed to determine the functional relationship between CD44 and MT1-MMP in the activation of pro-MMP9. We used osteoclasts isolated from wild-type and CD44-null mice.

View Article and Find Full Text PDF

Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers.

View Article and Find Full Text PDF

Background: Bone loss and pathological fractures are common skeletal complications associated with androgen deprivation therapy and bone metastases in prostate cancer patients. We have previously demonstrated that prostate cancer cells secrete receptor activator of NF-kB ligand (RANKL), a protein essential for osteoclast differentiation and activation. However, the mechanism(s) by which RANKL is produced remains to be determined.

View Article and Find Full Text PDF
Article Synopsis
  • - Citrate is found in high levels in the bones of vertebrates and is crucial for maintaining bone properties like stability and strength, but its role and source have been under-researched for decades.
  • - Recent studies suggest that osteoblasts, the bone-forming cells, produce citrate, leading to the new concept of "osteoblast citration."
  • - The presentation aims to provide a historical overview of citrate research and emphasize the need for more studies on citrate’s role in bone formation and its connection to zinc and metabolic processes.
View Article and Find Full Text PDF

Background: Osteopontin (OPN) has been shown to play many roles in the progression of cancer. We have recently demonstrated the activation of Akt by OPN. Integrin-linked kinase and PI3-kinase are integral proteins in OPN/AKT pathway in PC3 cells.

View Article and Find Full Text PDF