Activated intramolecular singlet fission is known to occur in the conjugated polymer polythienylene-vinylene (P3TV). Instead, efficient intersystem crossing has been observed in a short 3-alkyl(thienylene-vinylene) dimer. Here, we investigate a series of oligomers covering the conjugation length gap between the dimer and polymer.
View Article and Find Full Text PDFThe preparation, electrochemistry and photophysical properties of a heteroleptic chromium(III) polypyridyl complex [Cr(TMP)(dppn)] () containing two 3,4,7,8-tetramethyl-1,10-phenanthroline (TMP) ligands and the π-extended benzodipyrido[3,2-a:2',3'-]phenazine (dppn) ligand are reported. The visible absorption spectrum of reveals distinct bands between 320 and 420 nm characteristic of dppn-based ligand-centered transitions, with found to be nonemissive in aqueous solution but weakly luminescent in aerated acetonitrile solution. Transient visible absorption (TrA) spectroscopy reveals that 400 nm excitation of leads to initial population of a ligand-to-metal charge transfer (LMCT) state which evolves within tens of ps to form a dppn-localized intraligand (IL) state which persists for longer than 7 ns and efficiently sensitizes singlet oxygen.
View Article and Find Full Text PDFPhotoluminescent coordination complexes of Cr(III) are of interest as near-infrared spin-flip emitters. Here, we explore the preparation, electrochemistry, and photophysical properties of the first two examples of homoleptic -heterocyclic carbene complexes of Cr(III), featuring 2,6-(imidazolyl)pyridine (ImPyIm) and 2-imidazolylpyridine (ImPy) ligands. The complex [Cr(ImPy)] displays luminescence at 803 nm on the microsecond time scale (13.
View Article and Find Full Text PDFTwo novel cyclometallated iridium(III) complexes have been prepared with one bidentate or two monodentate imidazole-based ligands, 1 and 2, respectively. The complexes showed intense emission with long lifetimes of the excited state. Femtosecond transient absorption experiments established the nature of the lowest excited state as IL state.
View Article and Find Full Text PDFNatural materials' inherently weak nonlinear response demands the design of artificial substitutes to avoid optically large samples and complex phase-matching techniques. Silicon photonic crystals are promising artificial materials for this quest. Their nonlinear properties can be modulated optically, paving the way for applications ranging from ultrafast information processing to quantum technologies.
View Article and Find Full Text PDFTo unravel the role of driving force and structural changes in directing the photoinduced pathways in donor-bridge-acceptor (DBA) systems, we compared the ultrafast dynamics in novel DBAs which share a phenothiazine (PTZ) electron donor and a Pt(ii) -acetylide bridge (-C[triple bond, length as m-dash]C-Pt-C[triple bond, length as m-dash]C-), but bear different acceptors conjugated into the bridge (naphthalene-diimide, NDI; or naphthalene-monoimide, NAP). The excited state dynamics were elucidated by transient absorption, time-resolved infrared (TRIR, directly following electron density changes on the bridge/acceptor), and broadband fluorescence-upconversion (FLUP, directly following sub-picosecond intersystem crossing) spectroscopies, supported by TDDFT calculations. Direct conjugation of a strong acceptor into the bridge leads to switching of the lowest excited state from the intraligand IL state to the desired charge-separated CSS state.
View Article and Find Full Text PDFThe introduction of three β-oxosubstituents to octaethylporphyrin by means of an oxidation/rearrangement reaction generates the trioxopyrrocorphin chromophore. Pyrrocorphins (hexahydroporphyrins) are generally nonaromatic, but we recently demonstrated trioxopyrrocorphins to possess considerable aromatic character. This contribution explores the photophysical characteristics of these unusual chromophores.
View Article and Find Full Text PDFA combined experimental and theoretical study focused on the elucidation of the polymerization mechanism of the crystal monomer to crystal polymer reaction of a bisindenedione compound in the solid state. The experimental description and characterization of the polymer product have been reported elsewhere and, in this article, we address the first detailed description of the polymerization process. This reaction pathway consists of the initial formation of a triplet excimer state that relaxes to an intermolecularly bonded triplet state that is the starting point of the propagation step of the polymerization.
View Article and Find Full Text PDFThe study aims to understand the role of the transient bonding in the interplay between the structural and electronic changes in heteroleptic Cu(I) diimine diphosphine complexes. This is an emerging class of photosensitisers which absorb in the red region of the spectrum, whilst retaining a sufficiently long excited state lifetime. Here, the dynamics of these complexes are explored by transient absorption (TA) and time-resolved infrared (TRIR) spectroscopy, which reveal ultrafast intersystem crossing and structural distortion occurring.
View Article and Find Full Text PDFSinglet exciton fission is the spin-allowed generation of two triplet electronic excited states from a singlet state. Intramolecular singlet fission has been suggested to occur on individual carotenoid molecules within protein complexes provided that the conjugated backbone is twisted out of plane. However, this hypothesis has been forwarded only in protein complexes containing multiple carotenoids and bacteriochlorophylls in close contact.
View Article and Find Full Text PDFA detailed understanding of the dynamics of photoinduced processes occurring in the electronic excited state is essential in informing the rational design of photoactive transition-metal complexes. Here, the rate of intersystem crossing in a Cr(III)-centered spin-flip emitter is directly determined through the use of ultrafast broadband fluorescence upconversion spectroscopy (FLUPS). In this contribution, we combine 1,2,3-triazole-based ligands with a Cr(III) center and report the solution-stable complex [Cr(btmp)] (btmp = 2,6-(4-phenyl-1,2,3-triazol-1-yl-methyl)pyridine) (), which displays near-infrared (NIR) luminescence at 760 nm (τ = 13.
View Article and Find Full Text PDFPoly(3-alkyl(thienylene-vinylene)) (P3TV) and its longer oligomers have negligibly low photoluminescence quantum yields, however, the reason for their low yields is currently debated. Here, we prepare a series of regioregular (3-dodecyl)thienylene-vinylene oligomers with = 2-8 repeat units by iterative Horner-Wadsworth-Emmons reactions, and report their steady-state, transient absorption, and emission spectroscopy. The results presented here demonstrate that 3-alkyl(thienylene-vinylene) oligomers form part of the polyene family.
View Article and Find Full Text PDFThis work demonstrates photocatalytic CO reduction by a noble-metal-free photosensitizer-catalyst system in aqueous solution under red-light irradiation. A water-soluble Mn(I) tricarbonyl diimine complex, [MnBr(4,4'-{EtOPCH}-2,2'-bipyridyl)(CO)] (), has been fully characterized, including single-crystal X-ray crystallography, and shown to reduce CO to CO following photosensitization by tetra(-methyl-4-pyridyl)porphyrin Zn(II) tetrachloride [Zn(TMPyP)]Cl () under 625 nm irradiation. This is the first example of employed as a photosensitizer for CO reduction.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
February 2022
The bimolecular recombination characteristics of conjugated polymer poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-:2',3'-]silole)-2,6-diyl-alt-(2,5-bis 3-tetradecylthiophen-2-yl thiazolo 5,4- thiazole)-2,5diyl] (PDTSiTTz) blended with the fullerene series PC60BM, ICMA, ICBA, and ICTA have been investigated using microsecond and femtosecond transient absorption spectroscopy, in conjunction with electroluminescence measurements and ambient photoemission spectroscopy. The non-Langevin polymer PDTSiTTz allows an inspection of intrinsic bimolecular recombination rates uninhibited by diffusion, while the low oscillator strengths of fullerenes allow polymer features to dominate, and we compare our results to those of the well-known polymer Si-PCPDTBT. Using μs-TAS, we have shown that the trap-limited decay dynamics of the PDTSiTTz polaron becomes progressively slower across the fullerene series, while those of Si-PCPDTBT are invariant.
View Article and Find Full Text PDFWe demonstrate that β-oxo-substitution provides effective fine-tuning of both steady-state and transient electronic properties of octaalkyl-β-mono-oxochlorin and all isomers of the β,β'-dioxo-substituted chromophores. The addition of a carbonyl group increases the Q oscillator strength and red-shifts the absorption spectra. Each oxo-substitution results in a 2-fold increase in the singlet to triplet state intersystem crossing (ISC) rates, resulting in a 4-fold ISC rate increase for the dioxo-substituted chromophores.
View Article and Find Full Text PDFTriplet-triplet annihilation upconversion (TTA-UC) has great potential to significantly improve the light harvesting capabilities of photovoltaic cells and is also sought after for biomedical applications. Many factors combine to influence the overall efficiency of TTA-UC, the most fundamental of which is the spin statistical factor, η, that gives the probability that a bright singlet state is formed from a pair of annihilating triplet states. The value of η is also critical in determining the contribution of TTA to the overall efficiency of organic light-emitting diodes.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2021
The rates of ultrafast intersystem crossing in acceptor-bridge-donor molecules centered on Pt(II) acetylides are investigated. Specifically, a Pt(II) -acetylide triad NAP--Pt--Ph-CH-PTZ [1], with acceptor 4-ethynyl--octyl-1,8-naphthalimide (NAP) and donor phenothiazine (PTZ), is examined in detail. We have previously shown that optical excitation in [1] leads to a manifold of singlet charge-transfer states, S*, which evolve a triplet charge-transfer manifold into a triplet state NAP centered on the acceptor ligand and partly to a charge-separated state CSS (NAP-Pt-PTZ).
View Article and Find Full Text PDFSinglet fission and triplet-triplet annihilation represent two highly promising ways of increasing the efficiency of photovoltaic devices. Both processes are believed to be mediated by a biexcitonic triplet-pair state, (TT). Recently however, there has been debate over the role of (TT) in triplet-triplet annihilation.
View Article and Find Full Text PDFHerein is presented a molecular dyad comprised of a [Ru(bpy)] photosensitizer and an anthraquinone (AQ) acceptor coupled by an ethynyl linker ([Ru(bpy)(bpy-cc-AQ)]) in which activation/deactivation of photoinduced electron-transfer from the [Ru(bpy)] photosensitizer to the AQ acceptor is achieved and characterized as a function of the dielectric constant and hydrogen-bond donating ability of the solvent used. It is demonstrated that the rate of photoinduced electron-transfer can be modulated over several orders of magnitude (10-10 s) by choice of solvent. Nanosecond transient absorption spectra are dominated by MLCT signals and exhibit identical decay kinetics to the corresponding emission signals.
View Article and Find Full Text PDFNovel molecular Re and Mn tricarbonyl complexes bearing a bipyridyl ligand functionalised with sterically hindering substituents in the 6,6'-position, [M(HPEAB)(CO)3(X)] (M/X = Re/Cl, Mn/Br; HPEAB = 6,6'-{N-(4-hexylphenyl)-N(ethyl)-amido}-2,2'-bipyridine) have been synthesised, fully characterised including by single crystal X-ray crystallography, and their propensity to act as catalysts for the electrochemical and photochemical reduction of CO2 has been established. Controlled potential electrolysis showed that the catalysts are effective for electrochemical CO2-reduction, yielding CO as the product (in MeCN for the Re-complex, in 95 : 5 (v/v) MeCN : H2O mixture for the Mn-complex). The recyclability of the catalysts was demonstrated through replenishment of CO2 within solution.
View Article and Find Full Text PDFThe synthesis of new dinuclear complexes containing linked Ru(dppz) and Re(dppz) moieties is reported. The photophysical and biological properties of the new complex, which incorporates a ,'-bis(4-pyridylmethyl)-1,6-hexanediamine tether ligand, are compared to a previously reported Ru/Re complex linked by a simple dipyridyl alkane ligand. Although both complexes bind to DNA with similar affinities, steady-state and time-resolved photophysical studies reveal that the nature of the linker affects the excited state dynamics of the complexes and their DNA photocleavage properties.
View Article and Find Full Text PDFWith the aim of developing a sensitizer for photodynamic therapy, a previously reported luminescent dinuclear complex that functions as a DNA probe in live cells was modified to produce a new iso-structural derivative containing Ru(TAP) fragments (TAP = 1,4,5,8-tetraazaphenanthrene). The structure of the new complex has been confirmed by a variety of techniques including single crystal X-ray analysis. Unlike its parent, the new complex displays Ru → L-based MLCT emission in both MeCN and water.
View Article and Find Full Text PDFA ligand skeleton combining a 1,10-phenanthroline (phen) binding site and one or two heptadentate N3O4 aminocarboxylate binding sites, connected via alkyne spacers to the phen C3 or C3/C8 positions, has been used to prepare a range of heteronuclear Ru·M and Ru·M2 complexes which have been evaluated for their cell imaging, relaxivity, and photophysical properties. In all cases the phen unit is bound to a {Ru(bipy)2}2+ unit to give a phosphorescent {Ru(bipy)2(phen)}2+ luminophore, and the pendant aminocarboxylate sites are occupied by a secondary metal ion M which is either a lanthanide [Gd(iii), Nd(iii), Yb(iii)] or another d-block ion [Zn(ii), Mn(ii)]. When M = Gd(iii) or Mn(ii) these ions provide the complexes with a high relaxivity for water; in the case of Ru·Gd and Ru·Gd2 the combination of high water relaxivity and 3MLCT phosphorescence from the Ru(ii) unit provides the possibility of two different types of imaging modality in a single molecular probe.
View Article and Find Full Text PDF