Filamentation of high-power femtosecond optical pulses in high-pressure gases has gained increasing academic and practical interest from the viewpoint of studying large-scale spectral and temporal transformations occurring with pulsed laser radiation and obtaining super-broadened spectra and extremely short (attosecond) wave packets. Experimentally and theoretically, for the first time to the best of our knowledge, we show that as a result of a 45 fs Ti:sapphire laser pulse filamentation in an optical cell filled with pressurized up to 50 bar nitrogen or argon, the pulse spectrum can reach maximally about eightfold broadening. This limiting pulse spectral width is reached at a gas pressure of about 20 bar and with further pressure increase exhibits saturation and even a slight decrease relative to the limiting value.
View Article and Find Full Text PDFHigher-order topological insulators (HOTIs) are unique materials hosting topologically protected states, whose dimensionality is at least by 2 lower than that of the bulk. Topological states in such insulators may be strongly confined in their corners which leads to considerable enhancement of nonlinear processes involving such states. However, all nonlinear HOTIs demonstrated so far were built on periodic bulk lattice materials.
View Article and Find Full Text PDFCerium ammonium nitrate (CAN) is an important photolytic source of NO radicals in aqueous nitric acid solutions and in acetonitrile. In this work we performed the study of primary photochemical processes for CAN in acetonitrile by means of ultrafast TA spectroscopy and quantum chemical calculations. Photoexcitation of CAN is followed by ultrafast (< 100 fs) intersystem crossing; the vibrationally cooled triplet state decays to pentacoordinated Ce(III) intermediate and NO radical with the characteristic time of ca.
View Article and Find Full Text PDFPhotophysics and photochemistry of a potential light-activated cytotoxic dirhodium complex [Rh(µ-OCCH)(bpy)(dppz)](OCCH), where bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine (Complex 1 or Rh2) in aqueous solutions was studied by means of stationary photolysis and time-resolved methods in time range from hundreds of femtoseconds to microseconds. According to the literature, Complex 1 demonstrates both oxygen-dependent (due to singlet oxygen formation) and oxygen-independent cytotoxicity. Photoexchange of an acetate ligand to a water molecule was the only observed photochemical reaction, which rate was increased by oxygen removal from solutions.
View Article and Find Full Text PDFFloquet systems with periodically varying in time parameters enable realization of unconventional topological phases that do not exist in static systems with constant parameters and that are frequently accompanied by appearance of novel types of the topological states. Among such Floquet systems are the Su-Schrieffer-Heeger lattices with periodically-modulated couplings that can support at their edges anomalous π modes of topological origin despite the fact that the lattice spends only half of the evolution period in topologically nontrivial phase, while during other half-period it is topologically trivial. Here, using Su-Schrieffer-Heeger arrays composed from periodically oscillating waveguides inscribed in transparent nonlinear optical medium, we report experimental observation of photonic anomalous π modes residing at the edge or in the corner of the one- or two-dimensional arrays, respectively, and demonstrate a new class of topological π solitons bifurcating from such modes in the topological gap of the Floquet spectrum at high powers.
View Article and Find Full Text PDFIntroduction of controllable deformations into periodic materials that lead to disclinations in their structure opens novel routes for construction of higher-order topological insulators hosting topological states at disclinations. Appearance of these topological states is consistent with the bulk-disclination correspondence principle, and is due to the filling anomaly that results in fractional charges to the boundary unit cells. So far, topological disclination states were observed only in the linear regime, while the interplay between nonlinearity and topology in the systems with disclinations has been never studied experimentally.
View Article and Find Full Text PDFA study of luminescence and photochromic properties of ()-2,3-bis(2,5-dimethylthiophen-3-yl)-5-(4-(pyrrolidin-1-yl)benzylidene)cyclopent-2-en-1-one, which is a diarylethene with a push-pull system between carbonyl and dimethylamino groups, was performed using time-resolved methods. The intramolecular charge transfer (ICT) process as well as 6π-electrocyclization and -/-isomerization contribute to the complex light-induced properties of this molecule. Formation of unexpected short-lived intermediates was detected in the time range from 100 fs to 100 μs.
View Article and Find Full Text PDFWe observe linear and nonlinear light localization at the edges and in the corners of truncated moiré arrays created by the superposition of periodic mutually twisted at Pythagorean angles square sublattices. Experimentally exciting corner linear modes in the femtosecond-laser written moiré arrays we find drastic differences in their localization properties in comparison with the bulk excitations. We also address the impact of nonlinearity on the corner and bulk modes and experimentally observe the crossover from linear quasilocalized states to the surface solitons emerging at the higher input powers.
View Article and Find Full Text PDFWe report the experimental observation of the periodic switching of topological edge states between two dimerized fs-laser written waveguide arrays. Switching occurs due to the overlap of the modal fields of the edge states from topological forbidden gap, when they are simultaneously present in two arrays brought into close proximity. We found that the phenomenon occurs for both strongly and weakly localized edge states and that switching rate increases with decreasing spacing between the topological arrays.
View Article and Find Full Text PDFWe report the experimental observation of nonlinear light localization and edge soliton formation at the edges of fs-laser written trimer waveguide arrays, where transition from nontopological to topological phases is controlled by the spacing between neighboring trimers. We found that, in the former regime, edge solitons occur only above a considerable power threshold, whereas in the latter one they bifurcate from linear states. Edge solitons are observed in a broad power range where their propagation constant falls into one of the topological gaps of the system, while partial delocalization is observed when considerable nonlinearity drives the propagation constant into an allowed band, causing coupling with bulk modes.
View Article and Find Full Text PDFMicrometer-thick layers of bacteria were prepared on fluorite substrates and scanned by focused mid-IR femtosecond laser radiation that was spectrally tuned to achieve the selective excitation of either the stretching C-H vibrations (3 μm), or stretching C = O, C-N vibrations (6 μm) of the amide groups in the bacteria. The enhanced biocidal efficiency of the latter selective excitation, compared to the more uniform 3-μm laser excitation, was demonstrated by performing viability assays of laser-treated bacterial layers. The bacterial inactivation by the 6-μm ultrashort laser pulses is attributed to dissociative denaturation of lipids and proteins in the cell membranes and intra-cell nucleic acids.
View Article and Find Full Text PDFHumification is a ubiquitous natural process of biomass degradation that creates multicomponent systems of nonliving organic matter, including dissolved organic matter (DOM) and humic substances (HS) in water environments, soils, and organic rocks. Despite significant differences in molecular composition, the optical properties of DOM and HS are remarkably similar, and the reason for this remains largely unknown. Here, we employed fluorescence spectroscopy with (sub)picosecond resolution to elucidate the role of electronic interactions within DOM and HS.
View Article and Find Full Text PDFMid-IR light bullets formation and self-reconstruction after total internal reflection in LiF is investigated experimentally and through numerical simulations. The experiment showed that spatial-temporal deformations of the wave packet in inhomogeneous wave on a reflecting interface can be neglected for this process and a near single-cycle light bullet can be formed or recovered after a distance determined by its energy loss for ionization and supercontinuum radiation. The estimation of the reconstruction distance by an empirical formula for self-focusing distance on the base of the peak power and the radius of the LB numerical simulation are in a good agreement with experimental data received.
View Article and Find Full Text PDFThe photochemistry of the OsIVCl62- complex in ethanol was studied by means of stationary photolysis, nanosecond laser flash photolysis, ultrafast pump-probe spectroscopy and quantum chemistry. The direction of the photochemical process was found to be wavelength-dependent. Irradiation in the region of the d-d and LMCT bands results in the photosolvation (with the wavelength-dependent quantum yield) and photoreduction of Os(iv) to Os(iii), correspondingly.
View Article and Find Full Text PDFThioflavin T (ThT) assay is extensively used for studying fibrillation kinetics in vitro. However, the differences in the time course of ThT fluorescence intensity and lifetime and other physical parameters of the system, such as particle size distribution, raise questions about the correct interpretation of the aggregation kinetics. In this work, we focused on the investigation of the mechanisms, which underlay the difference in sensitivity of ThT fluorescence intensity and lifetime to the formation of protein aggregates during fibrillation by the example of insulin and during binding to globular proteins.
View Article and Find Full Text PDFWe have studied the penetration of the extremely compressed wave packet-"light bullet" (LB)-through an air gap upon femtosecond single-pulse mid-IR filamentation in LiF. Applying the laser coloration method and performing numerical simulations, we have found that the single-cycle LB, which is formed before the air gap up to 0.5 mm wide, completely recovers after passing a certain distance inside LiF after the gap.
View Article and Find Full Text PDFThe intramolecular dynamics of vibrational levels (up to v = 5) of the ν mode in the (CF)CCO molecule that is induced by a multiphoton selective excitation of this mode by resonant femtosecond IR radiation has been studied. The times of intramolecular vibrational energy redistribution (IVR) from each vibrational level to remaining molecular modes have been determined. In accordance with theoretical predictions, a decrease in the IVR time with increasing quantum number v has been observed for the first time.
View Article and Find Full Text PDFA comparative two-photon excitation spectroscopic study of the exciton structure of the core antenna complex (LH1) and its subunit B820 was carried out. LH1 and its subunit B820 were isolated from cells of the carotenoid-less mutant G9 of Rhodospirillum rubrum. The measurements were performed by two-photon pump-probe spectroscopy.
View Article and Find Full Text PDFWe present a new concept for scanning probe microscopy characterization of molecular microstructures. It is based on a thin capillary using as a sharp tip to probe and map the morphology of a surface. In our experiment a collimated ion beam is formed by tungsten ions passing through a quartz tapered capillary with a 100-nm aperture and enters a 2D position-sensitive detector.
View Article and Find Full Text PDFIt is known that both cis,fac-[RuCl2(DMSO)3(H2O)] (1a) and trans,cis,cis-[RuCl2(DMSO)2(H2O)2] (2a) complexes, which are formed on the dissolution of trans and cis-isomers of [RuCl2(DMSO)4] in water, demonstrate light-induced anticancer activity. The first stage of 1a photochemistry is its transformation to 2a occurring with a rather high quantum yield, 0.64 ± 0.
View Article and Find Full Text PDFTwo mechanisms of OsCl photolysis were studied by means of quantum chemical calculations in gas and aqueous phases. The difference between these mechanisms is in the nature of the possible Os(iv) key intermediates (KI). According to calculations, the intermediate is an OsCl complex of square pyramidal coordination geometry.
View Article and Find Full Text PDFDiazide diamino complexes of Pt(iv) are considered as prospective prodrugs in oxygen-free photodynamic therapy (PDT). Primary photophysical and photochemical processes for cis,trans,cis-[Pt(N)(OH)(NH)] and trans,trans,trans-[Pt(N)(OH)(NH)] complexes were studied by means of stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy. The process of photolysis is multistage.
View Article and Find Full Text PDFWe demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm.
View Article and Find Full Text PDF