Publications by authors named "Cheever A"

Chimeric antigen receptor (CAR) T cell therapy has become an important treatment for hematological cancers, and its success has spurred research into CAR T cell therapies for other diseases, including solid tumor cancers and autoimmune diseases. Notably, the development of CAR-based treatments for autoimmune diseases has shown great progress recently. Clinical trials for anti-CD19 and anti-BCMA CAR T cells in treating severe B cell-mediated autoimmune diseases, like systemic lupus erythematosus (SLE), have shown lasting remission thus far.

View Article and Find Full Text PDF

The annual meeting for the Intermountain Branch was held in April 2024 on the campus of Brigham Young University. There were 127 branch members from Utah, Idaho, and Nevada who attended the meeting and were composed of undergraduate students, graduate or medical students, and faculty. This report highlights the diversity of, and the emerging trends in, the research conducted by American Society for Microbiology members in the Intermountain Branch.

View Article and Find Full Text PDF

Graves' disease (GD) is a thyroid-specific autoimmune disease with a high prevalence worldwide. The disease is primarily mediated by B cells, which produce autoantibodies against the thyroid-stimulating hormone receptor (TSHR), chronically stimulating it and leading to high levels of thyroid hormones in the body. Interest in characterizing the immune response in GD has motivated many phenotyping studies.

View Article and Find Full Text PDF

For nearly three decades, chimeric antigen receptors (CARs) have captivated the interest of researchers seeking to find novel immunotherapies to treat cancer. CARs were first designed to work with T cells, and the first CAR T cell therapy was approved to treat B cell lymphoma in 2017. Recent advancements in CAR technology have led to the development of modified CARs, including multi-specific CARs and logic gated CARs.

View Article and Find Full Text PDF

Programmable nuclease-based genome editing technologies, including the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system, are becoming an essential component of many applications ranging from agriculture to medicine. However, fundamental limitations currently prevent the widespread, safe, and practical use of genome editors, especially for human disease interventions. These limitations include off-target effects, a lack of control over editing activity, suboptimal DNA repair outcomes, insufficient target conversion, and inadequate delivery performance.

View Article and Find Full Text PDF

Thymic stromal lymphopoietin (TSLP), interleukin-25 (IL-25), and IL-33 are important initiators of type 2-associated mucosal inflammation and immunity. However, their role in the maintenance of progressive type 2 inflammation and fibrosis is much less clear. Using chronic models of helminth infection and allergic lung inflammation, we show that collective disruption of TSLP, IL-25, and IL-33 signaling suppresses chronic and progressive type 2 cytokine-driven inflammation and fibrosis.

View Article and Find Full Text PDF

Persistent or dysregulated IL-13 responses are key drivers of fibrosis in multiple organ systems, and this identifies this cytokine as an important therapeutic target. Nevertheless, the mechanisms by which IL-13 blockade leads to the amelioration of fibrosis remain unclear. Because IFN-γ exhibits potent anti-fibrotic activity, and IL-4Rα signalling antagonizes IFN-γ effector function, compensatory increases in IFN-γ activity following IL-13/IL-4Rα blockade might contribute to the reduction in fibrosis.

View Article and Find Full Text PDF

Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri.

View Article and Find Full Text PDF

The roles of macrophages in type 2-driven inflammation and fibrosis remain unclear. Here, using CD11b-diphtheria toxin receptor (DTR) transgenic mice and three models of interleukin 13 (IL-13)-dependent inflammation, fibrosis, and immunity, we show that CD11b(+) F4/80(+) Ly6C(+) macrophages are required for the maintenance of type 2 immunity within affected tissues but not secondary lymphoid organs. Direct depletion of macrophages during the maintenance or resolution phases of secondary Schistosoma mansoni egg-induced granuloma formation caused a profound decrease in inflammation, fibrosis, and type 2 gene expression.

View Article and Find Full Text PDF

Mice expressing a Cre recombinase from the lysozyme M-encoding locus (Lyz2) have been widely used to dissect gene function in macrophages and neutrophils. Here, we show that while naïve resident tissue macrophages from IL-4Rαf(lox/delta)LysM(Cre) mice almost completely lose IL-4Rα function, a large fraction of macrophages elicited by sterile inflammatory stimuli, Schistosoma mansoni eggs, or S. mansoni infection, fail to excise Il4rα.

View Article and Find Full Text PDF

Circadian clocks are biological oscillators that regulate daily behaviors in organisms across the kingdoms of life. Their rhythms are generated by complex systems, generally involving interlocked regulatory feedback loops. These rhythms are entrained by the daily light/dark cycle, ensuring that the internal clock time is coordinated with the environment.

View Article and Find Full Text PDF

Th2-driven lung inflammation increases Arginase 1 (Arg1) expression in alternatively-activated macrophages (AAMs). AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology.

View Article and Find Full Text PDF

Mannose-binding lectin (MBL) is a humoral pattern-recognition molecule important for host defense. Although recent genetic studies suggest an involvement of MBL/MASP2-associated pathways in Chagas' disease, it is currently unknown whether MBL plays a role in host resistance to the intracellular protozoan Trypanosoma cruzi, the causative agent of Chagas' disease. In this study we employed MBL(-/-) mice to assess the role of MBL in resistance to experimental infection with T.

View Article and Find Full Text PDF

Background & Aims: Progressive fibrosis contributes to the morbidity of several chronic diseases; it typically develops slowly, so the mechanisms that control its progression and resolution have been difficult to model. The proteins interleukin (IL)-10, IL-12p40, and IL-13Rα2 regulate hepatic fibrosis following infection with the helminth parasite Schistosoma mansoni. We examined whether these mediators interact to slow the progression of hepatic fibrosis in mice with schistosomiasis.

View Article and Find Full Text PDF

Despite effective chemotherapy to treat schistosome infections, re-infection rates are extremely high. Resistance to reinfection can develop, however it typically takes several years following numerous rounds of treatment and re-infection, and often develops in only a small cohort of individuals. Using a well-established and highly permissive mouse model, we investigated whether immunoregulatory mechanisms influence the development of resistance.

View Article and Find Full Text PDF

Macrophages play key roles in wound repair and fibrosis by regulating extracellular matrix turnover. Macrophages can process matrix components themselves, but also recruit and alter the functions of other cell types that directly build or degrade extracellular matrix. Classically activated macrophages (CAM, also called M1) tend to promote tissue injury while alternatively activated macrophages (AAM, also called M2) are often linked with the mechanisms of wound repair and fibrosis.

View Article and Find Full Text PDF

Background & Aims: The cytokine interleukin (IL)-10 is required to maintain immune homeostasis in the gastrointestinal tract. IL-10 null mice spontaneously develop colitis or are more susceptible to induction of colitis by infections, drugs, and autoimmune reactions. IL-13 regulates inflammatory conditions; its activity might be compromised by the IL-13 decoy receptor (IL-13Rα2).

View Article and Find Full Text PDF

FXR1P is one of two autosomal paralogs of the fragile X mental retardation protein FMRP. The absence of FMRP causes fragile X syndrome, the leading cause of hereditary mental retardation. FXR1P plays an important role in normal muscle development and has been implicated in facioscapulohumeral muscular dystrophy (FSHD).

View Article and Find Full Text PDF

Type I IFN has been demonstrated to have major regulatory effects on the outcome of bacterial infections. To assess the effects of exogenously induced type I IFN on the outcome of Mycobacterium tuberculosis infection, we treated pathogen-exposed mice intranasally with polyinosinic-polycytidylic acid condensed with poly-l-lysine and carboxymethylcellulose (Poly-ICLC), an agent designed to stimulate prolonged, high-level production of type I IFN. Drug-treated, M.

View Article and Find Full Text PDF

IL-22 is a member of the IL-10 cytokine family and signals through a heterodimeric receptor composed of the common IL-10R2 subunit and the IL-22R subunit. IL-10 and IL-22 both activate the STAT3 signaling pathway; however, in contrast to IL-10, relatively little is known about IL-22 in the host response to infection. In this study, using IL-22(-/-) mice, neutralizing Abs to IL-22, or both, we show that IL-22 is dispensable for the development of immunity to the opportunistic pathogens Toxoplasma gondii and Mycobacterium avium when administered via the i.

View Article and Find Full Text PDF

To investigate the respective contributions of TLR versus IL-1R mediated signals in MyD88 dependent control of Mycobacterium tuberculosis, we compared the outcome of M. tuberculosis infection in MyD88, TRIF/MyD88, IL-1R1, and IL-1beta-deficient mice. All four strains displayed acute mortality with highly increased pulmonary bacterial burden suggesting a major role for IL-1beta signaling in determining the MyD88 dependent phenotype.

View Article and Find Full Text PDF

Infection with the parasitic helminth Schistosoma mansoni causes significant liver fibrosis and extracellular matrix (ECM) remodeling. Matrix metalloproteinases (MMP) are important regulators of the ECM by regulating cellular inflammation, extracellular matrix deposition, and tissue reorganization. MMP12 is a macrophage-secreted elastase that is highly induced in the liver and lung in response to S.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a destructive inflammatory disease with limited therapeutic options. To better understand the inflammatory responses that precede and concur with collagen deposition, we used three models of pulmonary fibrosis and identify a critical mechanistic role for IL-17A. After exposure to bleomycin (BLM), but not Schistosoma mansoni eggs, IL-17A produced by CD4(+) and gammadelta(+) T cells induced significant neutrophilia and pulmonary fibrosis.

View Article and Find Full Text PDF

Thymic stromal lymphopoietin was recently identified as a master switch for the development of allergen-driven Th2 responses. However, the role of thymic stromal lymphopoietin (TSLP) in the development of helminth-induced Th2 responses is unclear. Here, using TSLPR(-/-) mice, we show that while TSLPR signaling participates in the development of Schistosoma mansoni egg-induced CD4(+) Th2 responses, it plays only a transient role in the development of Th2-dependent pathology in the lung, liver, and intestine.

View Article and Find Full Text PDF

Retnla (Resistin-like molecule alpha/FIZZ1) is induced during Th2 cytokine immune responses. However, the role of Retnla in Th2-type immunity is unknown. Here, using Retnla(-/-) mice and three distinct helminth models, we show that Retnla functions as a negative regulator of Th2 responses.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionv88gfmsgeqsbj2ei75gfvfvdg4a8915q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once