Publications by authors named "Chee Tong John Low"

Lithium-ion battery electrodes are typically manufactured via slurry casting, which involves mixing active material particles, conductive carbon, and a polymeric binder in a solvent, followed by casting and drying the coating on current collectors (Al or Cu). These electrodes are functional but still limited in terms of pore network percolation, electronic connectivity, and mechanical stability, leading to poor electron/ion conductivities and mechanical integrity upon cycling, which result in battery degradation. To address this, we fabricate trichome-like carbon-iron fabrics via a combination of electrospinning and pyrolysis.

View Article and Find Full Text PDF

The hierarchically nanostructured NiTe@CoxSy composites are constructed on a foamed nickel substrate by a two-step electrode preparation process. Structural characterization shows the dense growing of CoxSy nanosheets around NiTe nanorods forms a hierarchical nanostructure which possesses synergetic effects from both compositional and structural complementarity, more pathways for ion/electrolyte transport, richer redox active sites, and better conductivity. Thanks to the rational design of this hierarchical structure, NiTe@CoxSy delivers a high areal capacitance of 7.

View Article and Find Full Text PDF

Accurate monitoring of battery cell state of charge (SoC) and state of health (SoH) is vital to the safe and effective operation of rechargeable battery systems such as those in electric vehicles yet remains a challenge while the system is in use. A new surface-mounted sensor enabling simple and rapid monitoring of lithium-ion battery cell SoC and SoH is demonstrated. Small changes in cell volume brought about by the expansion and contraction of electrode materials during charge and discharge are detected through monitoring the changes in electrical resistance of a graphene film in the sensor.

View Article and Find Full Text PDF

With a theoretical capacity of 847 mAh g , Sn has emerged as promising anode material for sodium-ion batteries (SIBs). However, enormous volume expansion and agglomeration of nano Sn lead to low Coulombic efficiency and poor cycling stability. Herein, an intermetallic FeSn layer is designed via thermal reduction of polymer-Fe O coated hollow SnO spheres to construct a yolk-shell structured Sn/FeSn @C.

View Article and Find Full Text PDF

Electrophoretic deposition (EPD) is a highly convenient and demonstrated industrial operation for the manufacture of surface coatings. Recent years are seeing increasing evidence in using this technique to produce energy storage electrodes (notably for lithium-ion batteries, solid-state devices, supercapacitors, and flow batteries), but their advancement for industrialisation remains unclear. Using activated carbon (AC) as an exemplary supercapacitor material, this study reports the practical aspects of porous energy storage electrodes produced by the EPD technique.

View Article and Find Full Text PDF

Huge volume changes of Si during lithiation/delithiation lead to regeneration of solid-electrolyte interphase (SEI) and consume electrolyte. In this article, γ-glycidoxypropyl trimethoxysilane (GOPS) was incorporated in Si/PEDOT:PSS electrodes to construct a flexible and conductive artificial SEI, effectively suppressing the consumption of electrolyte. The optimized electrode can maintain 1000 mAh g for nearly 800 cycles under limited electrolyte compared with 40 cycles of the electrodes without GOPS.

View Article and Find Full Text PDF

Hybrid redox flow cells (HRFC) are key enablers for the development of reliable large-scale energy storage systems; however, their high cost, limited cycle performance, and incompatibilities associated with the commonly used carbon-based electrodes undermine HRFC's commercial viability. While this is often linked to lack of suitable electrocatalytic materials capable of coping with HRFC electrode processes, the combinatory use of nanocarbon additives and carbon paper electrodes holds new promise. Here, by coupling electrophoretically deposited nitrogen-doped graphene (N-G) with carbon electrodes, their surprisingly beneficial effects on three types of HRFCs, namely, hydrogen/vanadium (RHVFC), hydrogen/manganese (RHMnFC), and polysulfide/air (S-Air), are revealed.

View Article and Find Full Text PDF

The electrochemical behaviour of ferrocene (Fc) is investigated in six different deep eutectic solvents (DESs) formed by means of hydrogen bonding between selected ammonium and phosphonium salts with glycerol and ethylene glycol. Combinations of cyclic voltammetry and chronoamperometry are employed to characterise the DESs. The reductive and oxidative potential limits are reported versus the Fc/Fc(+) couple.

View Article and Find Full Text PDF