IEEE J Biomed Health Inform
March 2024
Brain functional connectivity (FC) networks inferred from functional magnetic resonance imaging (fMRI) have shown altered or aberrant brain functional connectome in various neuropsychiatric disorders. Recent application of deep neural networks to connectome-based classification mostly relies on traditional convolutional neural networks (CNNs) using input FCs on a regular Euclidean grid to learn spatial maps of brain networks neglecting the topological information of the brain networks, leading to potentially sub-optimal performance in brain disorder identification. We propose a novel graph deep learning framework that leverages non-Euclidean information inherent in the graph structure for classifying brain networks in major depressive disorder (MDD).
View Article and Find Full Text PDFObjective: The aim of this study was to identify the potential electrophysiological biomarkers of human responses by comparing the electroencephalogram brain wave changes towards lavender versus normal saline in a healthy human population.
Method: This study included a total of 44 participants without subjective olfactory disturbances. Lavender and normal saline were used as the olfactory stimulant and control.
We consider the challenges in extracting stimulus-related neural dynamics from other intrinsic processes and noise in naturalistic functional magnetic resonance imaging (fMRI). Most studies rely on inter-subject correlations (ISC) of low-level regional activity and neglect varying responses in individuals. We propose a novel, data-driven approach based on low-rank plus sparse ( [Formula: see text]) decomposition to isolate stimulus-driven dynamic changes in brain functional connectivity (FC) from the background noise, by exploiting shared network structure among subjects receiving the same naturalistic stimuli.
View Article and Find Full Text PDFThe purpose is to estimate the effectiveness of electrocardiograms during resting and active participation by the differentiation between the electrical activity of the heart while standing and sitting in a resting state. The concern is to identify the electrocardiogram parameters that did not show significant changes within these positions. The electrocardiogram parameters can be considered to be a standard marker for medically compromised patients.
View Article and Find Full Text PDFObjective: We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks.
Method: To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals.
Background: Recent studies have indicated that functional connectivity is dynamic even during rest. A common approach to modeling the dynamic functional connectivity in whole-brain resting-state fMRI is to compute the correlation between anatomical regions via sliding time windows. However, the direct use of the sample correlation matrices is not reliable due to the image acquisition and processing noises in resting-sate fMRI.
View Article and Find Full Text PDFObjective: We exploit altered patterns in brain functional connectivity as features for automatic discriminative analysis of neuropsychiatric patients. Deep learning methods have been introduced to functional network classification only very recently for fMRI, and the proposed architectures essentially focused on a single type of connectivity measure.
Methods: We propose a deep convolutional neural network (CNN) framework for classification of electroencephalogram (EEG)-derived brain connectome in schizophrenia (SZ).
IEEE J Biomed Health Inform
March 2020
Objective: We consider challenges in accurate segmentation of heart sound signals recorded under noisy clinical environments for subsequent classification of pathological events. Existing state-of-the-art solutions to heart sound segmentation use probabilistic models such as hidden Markov models (HMMs), which, however, are limited by its observation independence assumption and rely on pre-extraction of noise-robust features.
Methods: We propose a Markov-switching autoregressive (MSAR) process to model the raw heart sound signals directly, which allows efficient segmentation of the cyclical heart sound states according to the distinct dependence structure in each state.
IEEE Trans Med Imaging
April 2018
We consider the challenges in estimating the state-related changes in brain connectivity networks with a large number of nodes. Existing studies use the sliding-window analysis or time-varying coefficient models, which are unable to capture both smooth and abrupt changes simultaneously, and rely on ad-hoc approaches to the high-dimensional estimation. To overcome these limitations, we propose a Markov-switching dynamic factor model, which allows the dynamic connectivity states in functional magnetic resonance imaging (fMRI) data to be driven by lower-dimensional latent factors.
View Article and Find Full Text PDFMost neuroscience cognitive experiments involve repeated presentations of various stimuli across several minutes or a few hours. It has been observed that brain responses, even to the same stimulus, evolve over the course of the experiment. These changes in brain activation and connectivity are believed to be associated with learning and/or habituation.
View Article and Find Full Text PDFObjective: This paper addresses the critical problem of estimating time-evolving effective brain connectivity. Current approaches based on sliding window analysis or time-varying coefficient models do not simultaneously capture both slow and abrupt changes in causal interactions between different brain regions.
Methods: To overcome these limitations, we develop a unified framework based on a switching vector autoregressive (SVAR) model.
We consider the problem of selecting the optimal orders of vector autoregressive (VAR) models for fMRI data. Many previous studies used model order of one and ignored that it may vary considerably across data sets depending on different data dimensions, subjects, tasks, and experimental designs. In addition, the classical information criteria (IC) used (e.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
This paper investigates the use of linear dynamic models (LDMs) to improve classification of single-trial EEG signals. Existing dynamic classification of EEG uses discrete-state hidden Markov models (HMMs) based on piecewise-stationary assumption, which is inadequate for modeling the highly non-stationary dynamics underlying EEG. The continuous hidden states of LDMs could better describe this continuously changing characteristic of EEG, and thus improve the classification performance.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2015
We investigate the use of discriminative feature extractors in tandem configuration with generative EEG classification system. Existing studies on dynamic EEG classification typically use hidden Markov models (HMMs) which lack discriminative capability. In this paper, a linear and a non-linear classifier are discriminatively trained to produce complementary input features to the conventional HMM system.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2013
This paper applies an expectation-maximization (EM) based Kalman smoother (KS) approach for single-trial event-related potential (ERP) estimation. Existing studies assume a Markov diffusion process for the dynamics of ERP parameters which is recursively estimated by optimal filtering approaches such as Kalman filter (KF). However, these studies only consider estimation of ERP state parameters while the model parameters are pre-specified using manual tuning, which is time-consuming for practical usage besides giving suboptimal estimates.
View Article and Find Full Text PDFAuscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult.
View Article and Find Full Text PDFThis paper proposes non-Gaussian models for parametric spectral estimation with application to event-related desynchronization (ERD) estimation of nonstationary EEG. Existing approaches for time-varying spectral estimation use time-varying autoregressive (TVAR) state-space models with Gaussian state noise. The parameter estimation is solved by a conventional Kalman filtering.
View Article and Find Full Text PDF