Publications by authors named "Chee Leng Lay"

Heat is abundantly available from various sources including solar irradiation, geothermal energy, industrial processes, automobile exhausts, and from the human body and other living beings. However, these heat sources are often overlooked despite their abundance, and their potential applications remain underdeveloped. In recent years, important progress has been made in the development of high-performance thermoelectric materials, which have been extensively studied at medium and high temperatures, but less so at near room temperature.

View Article and Find Full Text PDF

Catheter-associated urinary tract infections (CAUTIs) are common and pose significant costs to healthcare systems. To date, this problem is largely unsolved as commercially available antimicrobial catheters are still lacking in functionality and performance. A prior study by Lim et al.

View Article and Find Full Text PDF

The functional properties of a surface, such as its anti-fogging or anti-fouling performance, are influenced by its wettability. To quantify surface wettability, the most common approach is to measure the contact angles of a liquid droplet on the surface. While well established and relatively easy to perform, contact angle measurements were developed to describe macroscopic wetting properties and are difficult to perform for submillimetric droplets.

View Article and Find Full Text PDF

In nanoparticle self-assembly, the current lack of strategy to modulate orientational order creates challenges in isolating large-area plastic crystals. Here, we achieve two orientationally distinct supercrystals using one nanoparticle shape, including plastic crystals and uniform metacrystals. Our approach integrates multi-faceted Archimedean polyhedra with molecular-level surface polymeric interactions to tune nanoparticle orientational order during self-assembly.

View Article and Find Full Text PDF

The electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance owing to preferential catalyst-H formation and the consequential hydrogen evolution reaction (HER). Now, the Pt/Au electrocatalyst d-band structure is electronically modified using zeolitic imidazole framework (ZIF) to achieve a Faradaic efficiency (FE) of >44 % with high ammonia yield rate of >161 μg mg  h under ambient conditions. The strategy lowers electrocatalyst d-band position to weaken H adsorption and concurrently creates electron-deficient sites to kinetically drive NRR by promoting catalyst-N interaction.

View Article and Find Full Text PDF

Successful translation of laboratory-based surface-enhanced Raman scattering (SERS) platforms to clinical applications requires multiplex and ultratrace detection of small biomarker molecules from a complex biofluid. However, these biomarker molecules generally exhibit low Raman scattering cross sections and do not possess specific affinity to plasmonic nanoparticle surfaces, significantly increasing the challenge of detecting them at low concentrations. Herein, we demonstrate a "confine-and-capture" approach for multiplex detection of two families of urine metabolites correlated with miscarriage risks, 5β-pregnane-3α,20α-diol-3α-glucuronide and tetrahydrocortisone.

View Article and Find Full Text PDF

Two-photon lithography (TPL) is an emerging approach to fabricate complex multifunctional micro/nanostructures. This is because TPL can easily develop various 2D and 3D structures on a variety of surfaces, and there has been a rapidly expanding pool of processable photoresists to create different materials. However, challenges in developing two-photon processable photoresists currently impede progress in TPL.

View Article and Find Full Text PDF

There is a huge interest in developing superrepellent surfaces for antifouling and heat-transfer applications. To characterize the wetting properties of such surfaces, the most common approach is to place a millimetric-sized droplet and measure its contact angles. The adhesion and friction forces can then be inferred indirectly using Furmidge's relation.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a molecular-specific spectroscopic technique that provides up to 10-fold enhancement of signature Raman fingerprints using nanometer-scale 0D to 2D platforms. Over the past decades, 3D SERS platforms with additional plasmonic materials in the -axis have been fabricated at sub-micrometer to centimeter scale, achieving higher hotspot density in all , , and spatial directions and higher tolerance to laser misalignment. Moreover, the flexibility to construct platforms in arbitrary sizes and 3D shapes creates attractive applications besides traditional SERS sensing.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a molecule-specific spectroscopic technique with diverse applications in (bio)chemistry, clinical diagnosis and toxin sensing. While hotspot engineering has expedited SERS development, it is still challenging to detect molecules with no specific affinity to plasmonic surfaces. With the aim of improving detection performances, we venture beyond hotspot engineering in this tutorial review and focus on emerging material design strategies to capture and confine analytes near SERS-active surfaces as well as various promising hybrid SERS platforms.

View Article and Find Full Text PDF

Gas-liquid reactions form the basis of our everyday lives, yet they still suffer poor reaction efficiency and are difficult to monitor in situ, especially at ambient conditions. Now, an inert gas-liquid reaction between aniline and CO is driven at 1 atm and 298 K by selectively concentrating these immiscible reactants at the interface between metal-organic framework and solid nanoparticles (solid@MOF). Real-time reaction SERS monitoring and simulations affirm the formation of phenylcarbamic acid, which was previously undetectable because they are unstable for post-reaction treatments.

View Article and Find Full Text PDF

Nanoporous gold (NPG) promises efficient light-to-heat transformation, yet suffers limited photothermal conversion efficiency owing to the difficulty in controlling its morphology for the direct modulation of thermo-plasmonic properties. Herein, we showcase a series of shape-controlled NPG nanoparticles with distinct bowl- (NPG-B), tube- (NPG-T) and plate-like (NPG-P) structures for quantitative temperature regulation up to 140 °C in <1 s using laser irradiation. Notably, NPG-B exhibits the highest photothermal efficiency of 68%, which is >12 and 39 percentage points better than those of other NPG shapes (NPG-T, 56%; NPG-P, 49%) and Au nanoparticles (29%), respectively.

View Article and Find Full Text PDF

Organizing nanoparticles into supercrystals comprising multiple structures remains challenging. Here, we achieve one assembly with dual structures for Ag polyhedral building blocks, comprising truncated cubes, cuboctahedra, truncated octahedra, and octahedra. We create two micro-environments in a solvent evaporation-driven assembly system: one at the drying front and one at the air/water interface.

View Article and Find Full Text PDF

The application of aluminum (Al)-based nanostructures for visible-range plasmonics, especially for surface-enhanced Raman scattering (SERS), currently suffers from inconsistent local electromagnetic field distributions and/or inhomogeneous distribution of probe molecules. Herein, we lithographically fabricate structurally uniform Al nanostructures which enable homogeneous adsorption of various probe molecules. Individual Al nanostructures exhibit strong local electromagnetic field enhancements, in turn leading to intense SERS activity.

View Article and Find Full Text PDF

We demonstrate a one-step precise direct metal writing of well-defined and densely packed gold nanoparticle (AuNP) patterns with tunable physical and optical properties. We achieve this by using two-photon lithography on a Au precursor comprising poly(vinylpyrrolidone) (PVP) and ethylene glycol (EG), where EG promotes higher reduction rates of Au(III) salt via polyol reduction. Hence, clusters of monodisperse AuNP are generated along raster scanning of the laser, forming high-particle-density, well-defined structures.

View Article and Find Full Text PDF

The physical properties of aqueous-based stimuli-responsive photoresists are crucial in fabricating microstructures with high structural integrity and uniform responsiveness during two-photon lithography. Here, we quantitatively investigate how various components within bovine serum albumin (BSA) photoresists affect our ability to achieve BSA microstructures with consistent stimuli-responsive properties over areas exceeding 10(4) μm(2). We unveil a relationship between BSA concentration and dynamic viscosity, establishing a threshold viscosity to achieve robust BSA microstructures.

View Article and Find Full Text PDF

Two-dimensional (2D) geometrical shape-shifting is prevalent in nature, but remains challenging in man-made "smart" materials, which are typically limited to single-direction responses. Here, we fabricate geometrical shape-shifting bovine serum albumin (BSA) microstructures to achieve circle-to-polygon and polygon-to-circle geometrical transformations. In addition, transformative two-dimensional microstructure arrays are demonstrated by the ensemble of these responsive microstructures to confer structure-to-function properties.

View Article and Find Full Text PDF

Organic photoluminescent materials are important to many applications especially for diagnosis and detection, and most of organic photoluminescent materials contain fluorophores with extended conjugated structures. Recently some of amino-containing polymers without fluorophores with extended conjugated structure are observed to be photoluminescent, and one possible cause of the photoluminescence is oxidation of the amines. Here we show that photoluminescence can be produced by exposing a typical amino-containing polymer, polyethylenimine, to carbon dioxide.

View Article and Find Full Text PDF

Rocket-like vesicles formed are composed of poly(acrylic aicd) (PMAA )/poly(ethylene glycol) (PEG) complex coated hollow silica spheres, and the structure and composition of the vesicles are characterized using TGA, (1)H NMR, FTIR, and TEM. Although only one-third of EG units of PEG brushes grafted to hollow silica spheres form the complex with PMAA via hydrogen bonding, the first "booster" layer composed of PMAA/PEG complex can provide secure encapsulation of model compound calcein blue under an acidic condition. The second "booster" layer composed of PEG brushes can be formed by changing acidic pH to 7.

View Article and Find Full Text PDF

Redox-responsive hyperbranched poly(amido amine)s (PAAs) with tertiary amino cores and amine, poly(ethylene glycol) (PEG) and hydroxyl terminal groups were prepared for DNA delivery respectively. The DNA condensation capability of PAAs was investigated using gel electrophoresis, and the results showed that PAA terminated with 1-(2-aminoethyl)piperazine (AEPZ) (BAA) is the most efficient in binding plasmid DNA (pDNA). The diameter and zeta-potential of polyplexes from PAAs were characterized using dynamic light scattering (DLS), and the morphology of the polyplexes was obtained using atomic force microscopy (AFM).

View Article and Find Full Text PDF

In vitro and in vivo results reflect that functionalized carbon nanotubes (f-CNTs) are promising for the development of unique delivery systems of anticancer drugs. Functionalization of CNTs and drug loading are realized by covalent attachment and/or physical approaches. Poly(ethylene glycol) is the most adopted species for functionalization, which can increase the dispersity in aqueous solution and biocompatibility of CNTs.

View Article and Find Full Text PDF

Poly(methacrylic acid)-grafted hollow silica vesicles (PMAA-g-hollow silica vesicles) were obtained through a grafting-from approach. PMAA brushes were formed by performing atom-transfer radical polymerisation of sodium methacrylate with an initiator attached to the hollow silica spheres. PMAA-g-hollow silica vesicles were characterised by using TEM, thermogravimetric analysis (TGA) and FTIR spectroscopy.

View Article and Find Full Text PDF

A 'living' controlled hydrogel formation method was first reported to create loose and compact in situ biodegradable hydrogels. The method executed under mild reaction conditions can conveniently tailor the hydrogel properties, and it has the potential to develop into a powerful tool for the design, synthesis, and self-assembly of novel tailor-made biomaterials and drug delivery systems.

View Article and Find Full Text PDF

Unlabelled: Physically loading of paclitaxel (PTX) onto carbon nanotubes (CNTs) is achieved through immersion of poly(ethylene glycol) (PEG)-graft-single walled CNTs (PEG-g-SWNTs) or PEG-graft-multi-walled CNTs (PEG-g-MWNTs) in a saturated solution of PTX in methanol. After loading once the loading capacity (LD%) is 26% (w/w) and 36% (w/w) for PEG-g-SWNTs or PEG-g-MWNTs, respectively. With these PTX contents, PTX loaded PEG-g-SWNTs and PTX loaded PEG-g-MWNTs still have good dispersity in aqueous solution and individual CNTs can be observed in TEM images.

View Article and Find Full Text PDF