Publications by authors named "Chee Kwan Gan"

We present the results of a theoretical investigation of the linear thermal expansion coefficients (TECs) of BeF, within a direct Grüneisen formalism where symmetry-preserving deformations are employed. The required physical quantities such as the optimized crystal structures, elastic constants, mode Grüneisen parameters, and phonon density of states are calculated from first-principles. BeF shows an extensive polymorphism at low pressures, and the lowest energy phases [α-cristobalite with space group (SG) 422 and its similar phase with SG 422] are considered in addition to the experimentally observed α-quartz phase.

View Article and Find Full Text PDF

We report the direct observation of strong coupling between magnons and phonons in a two-dimensional antiferromagnetic semiconductor FePS_{3}, via magneto-Raman spectroscopy at magnetic fields up to 30 Tesla. A Raman-active magnon at 121  cm^{-1} is identified through Zeeman splitting in an applied magnetic field. At a field-driven resonance with a nearby phonon mode, a hybridized magnon-phonon quasiparticle is formed due to strong coupling between the two modes.

View Article and Find Full Text PDF

The hybrid nature and soft lattice of organolead halide perovskites render their structural changes and optical properties susceptible to external driving forces such as temperature and pressure, remarkably different from conventional semiconductors. Here, we investigate the pressure-induced optical response of a typical two-dimensional perovskite crystal, phenylethylamine lead iodide. At a moderate pressure within 3.

View Article and Find Full Text PDF

We present a method based on the Grüneisen formalism to calculate the thermal expansion coefficient (TEC) tensor that is applicable to any crystal system, where the number of phonon calculations associated with different deformations scales linearly with the number of lattice parameters. Compared to simple high-symmetry systems such as cubic or hexagonal systems, a proper consideration of low-symmetry systems such as monoclinic or triclinic crystals demands a clear distinction between the TEC tensor and the lattice-parameter TECs along the crystallographic direction. The latter is more complicated and it involves integrating the equations of motion for the primitive lattice vectors, with input from the TEC tensor.

View Article and Find Full Text PDF

Layered 2D halide perovskites with their alternating organic and inorganic atomic layers that form a self-assembled quantum well system are analogues of the purely inorganic 2D transition metal dichalcogenides. Within their periodic structures lie a hotbed of photophysical phenomena such as dielectric confinement effect, optical Stark effect, strong exciton-photon coupling, etc. Detailed understanding into the strong light-matter interactions in these hybrid organic-inorganic semiconductor systems remains modest.

View Article and Find Full Text PDF

2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.

View Article and Find Full Text PDF

Molybdenum disulfide (MoS2) and tungsten diselenide (WSe2) are prototypical layered two-dimensional transition metal dichalcogenide materials, with each layer consisting of three atomic planes. We refer to each layer as a trilayer (TL). We study the thermoelectric properties of 1-4TL MoS2 and WSe2 using a ballistic transport approach based on the electronic band structures and phonon dispersions obtained from first-principles calculations.

View Article and Find Full Text PDF

We present a lattice dynamics study of orthorhombic antimony sulphide (Sb2S3) obtained using density-functional calculations in conjunction with the supercell force-constant method. The effect of Born effective charges is taken into account using a mixed-space approach, resulting in the splitting of longitudinal and transverse optical (LO-TO) phonon branches near the zone center. Zone-center frequencies agree well with Raman scattering experiments.

View Article and Find Full Text PDF

Two-dimensional (2D) layered transition metal dichalcogenides (TMDs) have recently attracted tremendous interest as potential valleytronic and nanoelectronic materials, in addition to being well-known as excellent lubricants in the bulk. The interlayer van der Waals (vdW) coupling and low-frequency phonon modes and how they evolve with the number of layers are important for both the mechanical and the electrical properties of 2D TMDs. Here we uncover the ultralow frequency interlayer breathing and shear modes in few-layer MoS2 and WSe2, prototypical layered TMDs, using both Raman spectroscopy and first principles calculations.

View Article and Find Full Text PDF

Many emerging applications of hexagonal boron nitride (h-BN) in graphene-based nanoelectronics require high-quality monolayers as the ultrathin dielectric. Here, the nucleation and growth of h-BN monolayer on Ru(0001) surface are investigated using scanning tunneling microscopy with a view toward understanding the process of defect formation on a strongly interacted interface. In contrast to homoelemental bonding in graphene, the heteroelemental nature of h-BN gives rise to growth fronts with elemental polarity.

View Article and Find Full Text PDF

Using a combination of accurate density-functional theory and a nonequilibrium Green's function method, we calculate the ballistic thermal conductance characteristics of tensile-strained armchair (AGNR) and zigzag (ZGNR) edge graphene nanoribbons, with widths between 3 and 50 Å. The optimized lateral lattice constants for AGNRs of different widths display a three-family behavior when the ribbons are grouped according to N modulo 3, where N represents the number of carbon atoms across the width of the ribbon. Two lowest-frequency out-of-plane acoustic modes play a decisive role in increasing the thermal conductance of AGNR-N at low temperatures.

View Article and Find Full Text PDF

The graphene Moiré superstructure offers a complex landscape of humps and valleys to molecules adsorbing and diffusing on it. Using C(60) molecules as the classic hard sphere analogue, we examine its assembly and layered growth on this corrugated landscape. At the monolayer level, the cohesive interactions of C(60) molecules adsorbing on the Moiré lattice freeze the molecular rotation of C(60) trapped in the valley sites, resulting in molecular alignment of all similarly trapped C(60) molecules at room temperature.

View Article and Find Full Text PDF

The fragmentation of fullerenes using ions, surface collisions or thermal effects is a complex process that typically leads to the formation of small carbon clusters of variable size. Here, we show that geometrically well-defined graphene quantum dots can be synthesized on a ruthenium surface using C(60) molecules as a precursor. Scanning tunnelling microscopy imaging, supported by density functional theory calculations, suggests that the structures are formed through the ruthenium-catalysed cage-opening of C(60).

View Article and Find Full Text PDF

We use density-functional theory and the nonequilibrium Green's function method as well as phonon dispersion calculations to study the thermal conductance of graphene nanoribbons with armchair and zigzag edges, with and without hydrogen passivation. We find that low-frequency phonon bands of the zigzag ribbons are more dispersive than those of the armchair ribbons and that this difference accounts for the anisotropy in the thermal conductance of graphene nanoribbons. Comparing our results with data on large-area graphene, edge effects are shown to contribute to thermal conductance, enhance the anisotropy in thermal conductance of graphene nanoribbons, and increase thermal conductance per unit width.

View Article and Find Full Text PDF

Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching.

View Article and Find Full Text PDF

We present a detailed treatment of the nonequilibrium Green's function method for thermal transport due to atomic vibrations in nanostructures. Some of the key equations, such as self-energy and conductance with nonlinear effect, are derived. A self-consistent mean-field theory is proposed.

View Article and Find Full Text PDF

We present parallelization of a quantum-chemical tree-code for linear scaling computation of the Coulomb matrix. Equal time partition is used to load balance computation of the Coulomb matrix. Equal time partition is a measurement based algorithm for domain decomposition that exploits small variation of the density between self-consistent-field cycles to achieve load balance.

View Article and Find Full Text PDF