Publications by authors named "Chee Ho H'ng"

A major question in developmental and regenerative biology is how organ size and architecture are controlled by progenitor cells. While limb bones exhibit catch-up growth (recovery of a normal growth trajectory after transient developmental perturbation), it is unclear how this emerges from the behaviour of chondroprogenitors, the cells sustaining the cartilage anlagen that are progressively replaced by bone. Here we show that transient sparse cell death in the mouse fetal cartilage is repaired postnatally, via a two-step process.

View Article and Find Full Text PDF

The balance of cell proliferation and size is key for the control of organ development and repair. Moreover, this balance has to be coordinated within tissues and between tissues to achieve robustness in the organ's pattern and size. The tetrapod limb has been used to study these topics during development and repair, and several conserved pathways have emerged.

View Article and Find Full Text PDF

Enhancers are vitally important during embryonic development to control the spatial and temporal expression of genes. Recently, large scale genome projects have identified a vast number of putative developmental regulatory elements. However, the proportion of these that have been functionally assessed is relatively low.

View Article and Find Full Text PDF

The characterization of developmental phenotypes often relies on the accurate linear measurement of structures that are small and require laborious preparation. This is tedious and prone to errors, especially when repeated for the multiple replicates that are required for statistical analysis, or when multiple distinct structures have to be analyzed. To address this issue, we have developed a pipeline for characterization of long-bone length using X-ray microtomography (XMT) scans.

View Article and Find Full Text PDF

Multipotent bone marrow-derived mesenchymal stem/stromal cells (BMSCs) exhibit a finite life span after ex vivo expansion leading to cellular senescence. Many factors can contribute to this. Recently, our group has identified for the first time expression of the chemokine-like factor superfamily 8 (CMTM8) gene in cultured human BMSCs.

View Article and Find Full Text PDF