In this paper, artificial intelligence (AI) technology is applied to the electromagnetic imaging of anisotropic objects. Advances in magnetic anomaly sensing systems and electromagnetic imaging use electromagnetic principles to detect and characterize subsurface or hidden objects. We use measured multifrequency scattered fields to calculate the initial dielectric constant distribution of anisotropic objects through the backpropagation scheme (BPS).
View Article and Find Full Text PDFBackground: Acute kidney injury (AKI) is a severe complication of coronavirus disease 2019 (COVID-19) and is associated with a higher risk of mortality. Understanding the risk factors contributing to COVID-19-related AKI and mortality before vaccination is important for the initiation of preventative measures and early treatment strategies.
Methods: This study included patients aged ≥18 years diagnosed with COVID-19 through polymerase chain reaction from May 2020 to July 2021, admitted in three local hospitals in Taiwan, with an extended follow-up until June 30, 2022.
Cutaneous melanoma is a lethal skin cancer variant with pronounced aggressiveness and metastatic potential. However, few targeted medications inhibit the progression of melanoma. Ganoderma lucidum, which is a type of mushroom, is widely used as a non-toxic alternative adjunct therapy for cancer patients.
View Article and Find Full Text PDFDeveloping a tumor model with vessels has been a challenge in microfluidics. This difficulty is because cancer cells can overgrow in a co-culture system. The up-regulation of anti-angiogenic factors during the initial tumor development can hinder neovascularization.
View Article and Find Full Text PDFOuter tropical cyclone rainbands (TCRs) are a concentrated region of heavy precipitation and hazardous weather within tropical cyclones (TCs). Outer TCRs pose considerable risk to human societies, but their origin remains unresolved. Here, we identify a total of 1029 outer TCRs at their formative stage from 95 TCs and present a large collection of radar observations in order to establish a robust foundation of the natural diversity of rainband origin.
View Article and Find Full Text PDF: Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy for which ultrasound imaging has recently emerged as a valuable diagnostic tool. This meta-analysis aims to investigate the role of ultrasound radiomics in the diagnosis of CTS and compare it with other diagnostic approaches. : We conducted a comprehensive search of electronic databases from inception to September 2023.
View Article and Find Full Text PDFThe investigation of the effects of electrical and mechanical stimulations on chondrogenesis in tissue engineering scaffolds is essential for realizing successful cartilage repair and regeneration. The aim of articular cartilage tissue engineering is to enhance the function of damaged or diseased articular cartilage, which has limited regenerative capacity. Studies have shown that electrical stimulation (ES) promotes mesenchymal stem cell (MSC) chondrogenesis, while mechanical stimulation (MS) enhances the chondrogenic differentiation capacity of MSCs.
View Article and Find Full Text PDFSubacromial motion metrics can be extracted from dynamic shoulder ultrasonography, which is useful for identifying abnormal motion patterns in painful shoulders. However, frame-by-frame manual labeling of anatomical landmarks in ultrasound images is time consuming. The present study aims to investigate the feasibility of a deep learning algorithm for extracting subacromial motion metrics from dynamic ultrasonography.
View Article and Find Full Text PDFObjective: High-resolution ultrasound is an emerging tool for diagnosing carpal tunnel syndrome caused by the compression of the median nerve at the wrist. This systematic review and meta-analysis aimed to explore and summarize the performance of deep learning algorithms in the automatic sonographic assessment of the median nerve at the carpal tunnel level.
Methods: PubMed, Medline, Embase, and Web of Science were searched from the earliest records to May 2022 for studies investigating the utility of deep neural networks in the evaluation of the median nerve in carpal tunnel syndrome.
In ideal circumstances, a fractured bone can heal properly by itself or with the aid of clinical interventions. However, around 5% to 10% of bone fractures fail to heal properly within the expected time even with the aid of clinical interventions, resulting in nonunions. Platelet gel is a blood-derived biomaterial used in regenerative medicine aiming to promote wound healing and regeneration of damaged tissues.
View Article and Find Full Text PDFObjectives: To explore the subacromial motion metrics in patients with and without subacromial impingement syndrome (SIS) and to investigate whether the abnormality was associated with rotator cuff pathologies.
Design: This cross-sectional observational study used dynamic quantitative ultrasonography imaging for shoulder joint assessment.
Setting: Outpatient rehabilitation clinic.
The viscoelastic properties of materials such as polymers can be quantitatively evaluated by measuring and analyzing the viscoelastic behaviors such as stress relaxation and creep. The standard linear solid model is a classical and commonly used mathematical model for analyzing stress relaxation and creep behaviors. Traditionally, the constitutive equations for analyzing stress relaxation and creep behaviors based on the standard linear solid model are derived using the assumption that the loading is a step function, implying that the loading rate used in the loading process of stress relaxation and creep tests is infinite.
View Article and Find Full Text PDFThe plastic heel cup has been adopted to treat plantar heel problems for years. However, its mechanisms and biomechanical effects are yet to be fully understood. The purpose of this study was to investigate the effects of the plastic heel cup on the microchamber and macrochamber layers of the heel pad by comparing the stiffness (in terms of the shear wave speed) and thickness of these two layers with and without a plastic heel cup during static standing.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2022
Current imaging methods used to examine patients with subacromial impingement syndrome (SIS) are limited by their semi-quantitative nature and their capability of capturing dynamic movements. This study aimed to develop a quantitative analytic model to assess subacromial motions using dynamic ultrasound and to examine their reliability and potential influencing factors. We included 48 healthy volunteers and examined their subacromial motions with dynamic ultrasound imaging.
View Article and Find Full Text PDFConductive polymers (CPs) have received increasing attention as promising materials for studying electrophysiological signals in cell and tissue engineering. The combination of CPs with electrical stimulation (ES) could possibly enhance neurogenesis, osteogenesis, and myogenesis. To date, research has been prioritized on capitalizing CPs as two-dimensional (2D) structures for guiding the differentiation.
View Article and Find Full Text PDFMechanical properties are crucial parameters for scaffold design for bone tissue engineering; therefore, it is important to understand the definitions of the mechanical properties of bones and relevant analysis methods, such that tissue engineers can use this information to properly design the mechanical properties of scaffolds for bone tissue engineering. The main purpose of this article is to provide a review and practical guide to understand and analyze the mechanical properties of compact bone that can be defined and extracted from the stress-strain curve measured using uniaxial tensile test until failure. The typical stress-strain curve of compact bone measured using uniaxial tensile test until failure is a bilinear, monotonically increasing curve.
View Article and Find Full Text PDFMost biomaterials and tissues are viscoelastic; thus, evaluating viscoelastic properties is important for numerous biomedical applications. Compressional viscoelastography is an ultrasound imaging technique used for measuring the viscoelastic properties of biomaterials and tissues. It analyzes the creep behavior of a material under an external mechanical compression.
View Article and Find Full Text PDFMaterials (Basel)
August 2020
Several ultrasound-based methods have been developed to evaluate the viscoelastic properties of materials. The purpose of this study is to introduce a novel viscoelastography method based on ultrasound acoustic radiation force for measuring the parameters relevant to the viscoelastic properties of materials, named ramp-creep ultrasound viscoelastography (RC viscoelastography). RC viscoelastography uses two different ultrasound excitation modes to cause ramp and creep strain responses in the material.
View Article and Find Full Text PDFOphthalmic Plast Reconstr Surg
March 2021
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2019
Most transient ultrasound elastography methods use high-intensity ultrasound "push" pulses that generate a shear wave with a wide frequency spectrum. However, it is difficult to control how the energy of the wave is distributed within that spectrum. For this reason, the shear-wave group velocity may not match that of harmonic methods like magnetic resonance elastography (MRE).
View Article and Find Full Text PDF