Background And Aim: Computed tomography of the abdomen exhibits subtle and complex features of liver lesions, subjectively interpreted by physicians. We developed a deep learning-based localization and classification (DLLC) system for focal liver lesions (FLLs) in computed tomography imaging that could assist physicians in more robust clinical decision-making.
Methods: We conducted a retrospective study (approval no.
We aimed to develop an accurate and efficient skin cancer classification system using deep-learning technology with a relatively small dataset of clinical images. We proposed a novel skin cancer classification method, SkinFLNet, which utilizes model fusion and lifelong learning technologies. The SkinFLNet's deep convolutional neural networks were trained using a dataset of 1215 clinical images of skin tumors diagnosed at Taichung and Taipei Veterans General Hospital between 2015 and 2020.
View Article and Find Full Text PDFBackground And Objective: The gold standard for diagnosing epiretinal membranes is to observe the surface of the internal limiting membrane on optical coherence tomography images. The stages of the epiretinal membrane are used to decide the condition of the health of the membrane. The stages are not detected because some of them are similar.
View Article and Find Full Text PDFBenign prostatic hyperplasia (BPH) is the main cause of lower urinary tract symptoms (LUTS) in aging males. Transurethral resection of the prostate (TURP) surgery is performed by a cystoscope passing through the urethra and scraping off the prostrate piece by piece through a cutting loop. Although TURP is a minimally invasive procedure, bleeding is still the most common complication.
View Article and Find Full Text PDFTime-lapse microscopy images generated by biological experiments have been widely used for observing target activities, such as the motion trajectories and survival states. Based on these observations, biologists can conclude experimental results or present new hypotheses for several biological applications, i.e.
View Article and Find Full Text PDFFlank wear is the most common wear that happens in the end milling process. However, the process of detecting the flank wear is cumbersome. To achieve comprehensively automatic detecting the flank wear area of the spiral end milling cutter, this study proposed a novel flank wear detection method of combining the template matching and deep learning techniques to expand the curved surface images into panorama images, which is more available to detect the flank wear areas without choosing a specific position of cutting tool image.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFPurpose: Previous deep learning studies on optical coherence tomography (OCT) mainly focused on diabetic retinopathy and age-related macular degeneration. We proposed a deep learning model that can identify epiretinal membrane (ERM) in OCT with ophthalmologist-level performance.
Design: Cross-sectional study.
The gray level run length matrix (GLRLM) whose entries are statistics recording distribution and relationship of images pixels is a widely used method for extracting statistical features for medical images, e.g., magnetic resonance (MR) images.
View Article and Find Full Text PDFThe human genome consists of 98.5% non-coding DNA sequences, and most of them have no known function. However, a majority of disease-associated variants lie in these regions.
View Article and Find Full Text PDFComb Chem High Throughput Screen
April 2019
Aim And Objective: In the past decade, the drug design technologies have been improved enormously. The computer-aided drug design (CADD) has played an important role in analysis and prediction in drug development, which makes the procedure more economical and efficient. However, computation with big data, such as ZINC containing more than 60 million compounds data and GDB-13 with more than 930 million small molecules, is a noticeable issue of time-consuming problem.
View Article and Find Full Text PDFEvol Bioinform Online
October 2017
A phylogenetic tree is a visual diagram of the relationship between a set of biological species. The scientists usually use it to analyze many characteristics of the species. The distance-matrix methods, such as Unweighted Pair Group Method with Arithmetic Mean and Neighbor Joining, construct a phylogenetic tree by calculating pairwise genetic distances between taxa.
View Article and Find Full Text PDFThe Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one.
View Article and Find Full Text PDFCompound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n (2)), where n is the maximal length of compounds.
View Article and Find Full Text PDFBackground: The natural compound n-butylidenephthalide (BP) can pass through the blood-brain barrier to inhibit the growth of glioblastoma multiforme tumors. However, BP has an unstable structure that reduces its antitumor activity and half-life in vivo.
Objective: The aim of this study is to design a drug delivery system to encapsulate BP to enhance its efficacy by improving its protection and delivery.
For biological applications, sequence alignment is an important strategy to analyze DNA and protein sequences. Multiple sequence alignment is an essential methodology to study biological data, such as homology modeling, phylogenetic reconstruction and etc. However, multiple sequence alignment is a NP-hard problem.
View Article and Find Full Text PDFSingle nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together.
View Article and Find Full Text PDF