Publications by authors named "Che-Hung Kuo"

Various retention models have been widely used for understanding the retention mechanisms of solutes in reversed-phase chromatography systems. The models have been used to interpret the often-observed linear plots of the logarithms of retention factor k versus the solvent modifier concentration C and ln k versus ln⁡C. In this study, the retention behaviors of nine solutes as a function of acetonitrile (ACN) concentration were systematically investigated using a commercially available C column.

View Article and Find Full Text PDF

Tympanoplasty was conventionally performed using a microscope for decades. However, since the endoscope began to be used in middle ear surgery in the 1970s, endoscopic tympanoplasty has gained increasing attention. The main objective of this study was to compare endoscopic and microscopic tympanoplasty with and without ossiculoplasty, demonstrating the potential advantages, disadvantages, and outcomes of each.

View Article and Find Full Text PDF

Dynamic secondary ion mass spectrometry (D-SIMS) analysis of poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) (PMMA) was conducted using a quadrupole mass analyzer with various combinations of continuous C(60)(+) and Ar(+) ion sputtering. Individually, the Ar(+) beam failed to generate fragments above m/z 200, and the C(60)(+) beam generated molecular fragments of m/z ~1000. By combining the two beams, the auxiliary Ar(+) beam, which is proposed to suppress carbon deposition due to C(60)(+) bombardment and/or remove graphitized polymer, the sputtering range of the C(60)(+) beam is extended.

View Article and Find Full Text PDF

It has been shown that the application of self-assembled monolayers (SAMs) to semiconductors or metals may enhance the efficiency of optoelectronic devices by changing the surface properties and tuning the work functions at their interfaces. In this work, binary SAMs with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS) were used to modify the surface of Si to fine-tune the work function of Si to an arbitrary energy level. As an electron-donor, amine SAM (from APTMS) produced outward dipole moments, which led to a lower work function.

View Article and Find Full Text PDF

Self-assembled monolayer (SAM)-modified nano-materials are a new technology to deliver drug molecules. While the majority of these depend on covalently immobilizing molecules on the surface, it is proposed that electrostatic interactions may be used to deliver drugs. By tuning the surface potential of solid substrates with SAMs, drug molecules could be either absorbed on or desorbed from substrates through the difference in electrostatic interactions around the selected iso-electric point (IEP).

View Article and Find Full Text PDF

This study demonstrated that the work function (Φ) of Au substrates can be fine-tuned by using series ratios of binary self-assembled monolayers (SAMs). By using pure amine- and carboxylic acid-bearing alkanethiol SAM on gold substrates, Φ of Au changed from 5.10 to 5.

View Article and Find Full Text PDF

Cluster ion sputtering has been proven to be an effective technique for depth profiling of organic materials. In particular, C(60)(+) ion beams are widely used to profile soft matter. The limitation of carbon deposition associated with C(60)(+) sputtering can be alleviated by concurrently using a low-energy Ar(+) beam.

View Article and Find Full Text PDF

The nanostructure of the light emissive layer (EL) of polymer light emitting diodes (PLEDs) was investigated using force modulation microscopy (FMM) and scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) excited with focused Bi(3)(2+) primary beam. Three-dimensional nanostructures were reconstructed from high resolution ToF-SIMS images acquired with different C(60)(+) sputtering times. The observed nanostructure is related to the efficiency of the PLED.

View Article and Find Full Text PDF

By using 10 kV C(60)(+) and 200 V Ar(+) ion co-sputtering, a crater was created on the light-emitting layer of phosphorescent polymer light-emitting diodes, which consisted of a poly(9-vinyl carbazole) (PVK) host doped with a 24 wt % iridium(III)bis[(4,6-difluorophenyl)pyridinato-N,C(2)] (FIrpic) guest. A force modulation microscope (FMM) was used to analyze the nanostructure at the flat slope near the edge of the crater. The three-dimensional distribution of PVK and FIrpic was determined based on the difference in their mechanical properties from FMM.

View Article and Find Full Text PDF

Solution processable fullerene and copolymer bulk heterojunctions are widely used as the active layers of solar cells. In this work, scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to examine the distribution of [6,6]phenyl-C61-butyric acid methyl ester (PCBM) and regio-regular poly(3-hexylthiophene) (rrP3HT) that forms the bulk heterojunction. The planar phase separation of P3HT:PCBM is observed by ToF-SIMS imaging.

View Article and Find Full Text PDF

Solution-processable fullerene and copolymer bulk-heterojunctions are widely used as the active layer of solar cells. It is known that the controlled phase-separation in the film provides a pathway for carrier transportation and is crucial to efficiency. In this work, scanning electrical potential microscopy (SEPM) is used to examine the surface distribution of [6,6]phenyl-C61-butyric acid methyl ester and poly(3-hexylthiophene), which form the bulk-heterojunction.

View Article and Find Full Text PDF

Self-assembled monolayer (SAM)-modified gold nanoparticles can be used to immobilize and transport molecules including DNA and proteins. However, these molecules are usually covalently bound to the surface and chemical reactions are required to cleave and release them. Therefore, immobilizing molecules using electrostatic interactions might be beneficial.

View Article and Find Full Text PDF

Alkanethiol anchored self-assembled monolayers (SAMs) on gold are widely used to immobilize and detect molecules including DNA and proteins. Most of these molecules are covalently bonded with the SAM on the Au surface and cannot be released easily. By using different functional groups, the interfacial charge of SAMs can be selected, and thus, they can be considered as adaptors for immobilizing and releasing materials selectively through electrostatic interaction under given conditions.

View Article and Find Full Text PDF

The change of the chemical states of inorganic oxoanion salts by low-energy single atomic projectiles (0.5 kV Ar(+)), high-energy cluster ion beams (10 kV C(60)(+)), and mixed 0.2 kV Ar(+) and 10 kV C(60)(+) are presented.

View Article and Find Full Text PDF