High-energy nuclear collisions provide a unique site for the synthesis of both nuclei and antinuclei at temperatures of kT ≈ 100 - 150 MeV. In these little bangs of transient collisions, a quark-gluon plasma (QGP) of nearly vanishing viscosity is created, which is believed to have existed in the early universe within the first few microseconds after the Big Bang. Analyses of identified particles produced in these little bangs based on the statistical hadronization model for the QGP have suggested that light (anti)nuclei are produced from the QGP as other hadrons and their abundances are little affected by later hadronic dynamics.
View Article and Find Full Text PDFWe investigate the role of partonic degrees of freedom in high-multiplicity p-Pb collisions at sqrt[s_{NN}]=5.02 TeV carried out at the Large Hadron Collider (LHC) by studying the production and collective flow of identified hadrons at intermediate p_{T} via the coalescence of soft partons from the viscous hydrodynamics (VISH2+1) and hard partons from the energy loss model, linear Boltzmann transport (LBT). We find that combining these intermediate p_{T} hadrons with the low p_{T} hadrons from the hydrodynamically expanding fluid and high p_{T} hadrons from the fragmentation of quenched jets, the resulting hydro-dynamics-coalescence-fragmentation model provides a nice description of measured p_{T} spectra and differential elliptic flow v_{2}(p_{T}) of pions, kaons, and protons over the p_{T} range from 0 to 6 GeV.
View Article and Find Full Text PDFUsing a covariant and angular-momentum-conserved chiral transport model, which takes into account the spin-orbit interactions of chiral fermions in their scatterings via the side jumps, we study the quark spin polarization in quark matter. For a system of rotating and unpolarized massless quarks in an expanding box, we find that side jumps can dynamically polarize the quark spin and result in a final quark spin polarization consistent with that of thermally equilibrated massless quarks in a self-consistent vorticity field. For the quark matter produced in noncentral relativistic heavy ion collisions, we find that in the medium rest frame both the quark local spin polarizations in the direction perpendicular to the reaction plane and along the longitudinal beam direction show an azimuthal angle dependence in the transverse plane similar to those observed in experiments for the Lambda hyperon.
View Article and Find Full Text PDFUsing a partonic transport model based on the 3-flavor Nambu-Jona-Lasinio model and a relativistic hadronic transport model to describe, respectively, the evolution of the initial partonic and the final hadronic phase of heavy-ion collisions at energies carried out in the beam-energy scan program of the BNL Relativistic Heavy Ion collider, we study the effects of both the partonic and hadronic mean-field potentials on the elliptic flow of particles relative to that of their antiparticles. We find that to reproduce the measured relative elliptic flow differences between nucleons and antinucleons as well as between kaons and antikaons requires a vector coupling constant as large as 0.5-1.
View Article and Find Full Text PDFIdentifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule.
View Article and Find Full Text PDFWe propose the enhancement of Lambdac as a novel quark-gluon plasma signal in heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider. Assuming a stable bound diquark state in the strongly coupled quark-gluon plasma near the critical temperature, we argue that the direct two-body collision between a c quark and a [ud] diquark would lead to an enhanced Lambdac production in comparison with the normal three-body collision among independent c, u, and d quarks. In the coalescence model, we find that the Lambdac/D yield ratio is enhanced substantially due to the diquark correlation.
View Article and Find Full Text PDFWith an isospin- and momentum-dependent transport model, we find that the degree of isospin diffusion in heavy-ion collisions at intermediate energies is affected by both the stiffness of the nuclear symmetry energy and the momentum dependence of the nucleon potential. Using a momentum dependence derived from the Gogny effective interaction, recent experimental data from NSCL-MSU on isospin diffusion are shown to be consistent with a nuclear symmetry energy given by E(sym)(rho) approximately 31.6(rho/rho(0))(1.
View Article and Find Full Text PDFUsing an isospin-dependent transport model, we study the effects of nuclear symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei. We find that the density dependence of the nuclear symmetry energy affects significantly the nucleon emission times in these collisions, leading to larger values of two-nucleon correlation functions for a symmetry energy that has a stronger density dependence. Two-nucleon correlation functions are thus useful tools for extracting information about the nuclear symmetry energy from heavy-ion collisions.
View Article and Find Full Text PDF