Due to the installation of various apparatus in process industries, both factors of complex structures and severe operating conditions could result in higher accident frequencies and maintenance challenges. Given the importance of security in process systems, this paper presents a data-driven digital twin system for automatic process applications by integrating virtual modeling, process monitoring, diagnosis, and optimized control into a cooperative architecture. For unknown model parameters, the adaptive system identification is proposed to model closed-loop virtual systems and residual signals with fault-free case data.
View Article and Find Full Text PDF