Publications by authors named "Chazin W"

Since the initial reports showing the ability of electrospray ionization mass spectrometry (ESI-MS) to study intact noncovalent biomolecular complexes, an increasing number of uses for this technique in studying biochemical systems is emerging. We have investigated the ability of ESI-MS to characterize the metal-binding properties of calcium (Ca2+) binding proteins by studying the incorporation of Ca2+ and cadmium (Cd2+) into wild-type and mutant calbindin D9K. ESI-MS showed that wild-type calbindin D9K binds two Ca2+ ions with similar affinities while the binding of two Cd2+ ions is sequential, as is the binding of the two Ca2+ or Cd2+ ions to the N56A mutant of calbindin.

View Article and Find Full Text PDF

The growing database of three-dimensional structures of EF-hand calcium-binding proteins is revealing a previously unrecognized variability in the conformations and organizations of EF-hand binding motifs. The structures of twelve different EF-hand proteins for which coordinates are publicly available are discussed and related to their respective biological and biophysical properties. The classical picture of calcium sensors and calcium signal modulators is presented, along with variants on the basic theme and new structural paradigms.

View Article and Find Full Text PDF

The design of a series of functionally active models for manganese peroxidase (MnP) is described. Artificial metal binding sites were created near the heme of cytochrome c peroxidase (CCP) such that one of the heme propionates could serve as a metal ligand. At least two of these designs, MP6.

View Article and Find Full Text PDF

Hydrophobic core residues have a marked influence on the Ca2+-binding properties of calbindin D9k, even though there are no direct contacts between these residues and the bound Ca2+ ions. Eleven different mutants with substitutions in the hydrophobic core were produced, and their equilibrium Ca2+-binding constants measured from Ca2+ titrations in the presence of chromophoric chelators. The Ca2+-dissociation rate constants were estimated from Ca2+ titrations followed by 1H NMR1 and were measured more accurately using stopped-flow fluorescence.

View Article and Find Full Text PDF

The phenotypical and functional heterogeneity of different macrophage subpopulations are defined by discrete changes in the expression of two S100 calcium-binding proteins, migration inhibitory factor-related proteins (MRPs) 8 and 14. To further our understanding of MRP8 and MRP14 in the developmental stages of inflammatory responses, overexpression of the MRPs was obtained through a combination of a T7-based expression vector and the Escherichia coli BL21 (DE3) cell line. An efficient, two-step chromatographic protocol was then developed for rapid, facile purification.

View Article and Find Full Text PDF

The degree of chemical shift similarity for homologous proteins has been determined from a chemical shift database of over 50 proteins representing a variety of families and folds, and spanning a wide range of sequence homologies. After sequence alignment, the similarity of the secondary chemical shifts of C alpha protons was examined as a function of amino acid sequence identity for 37 pairs of structurally homologous proteins. A correlation between sequence identity and secondary chemical shift rmsd was observed.

View Article and Find Full Text PDF

Calcium sensor proteins translate transient increases in intracellular calcium levels into metabolic or mechanical responses, by undergoing dramatic conformational changes upon Ca2+ binding. A detailed analysis of the calcium binding-induced conformational changes in the representative calcium sensors calmodulin (CaM) and troponin C was performed to obtain insights into the underlying molecular basis for their response to the binding of calcium. Distance difference matrices, analysis of interresidue contacts, comparisons of interhelical angles, and inspection of structures using molecular graphics were used to make unbiased comparisons of the various structures.

View Article and Find Full Text PDF

Background: Calcyclin is a member of the S100 subfamily of EF-hand Ca(2+)-binding proteins. This protein has implied roles in the regulation of cell growth and division, exhibits deregulated expression in association with cell transformation, and is found in high abundance in certain breast cancer cell lines. The novel homodimeric structural motif first identified for apo calcyclin raised the possibility that S100 proteins recognize their targets in a manner that is distinctly different from that of the prototypical EF-hand Ca2+ sensor, calmodulin.

View Article and Find Full Text PDF

The three-dimensional solution structures of proteins determined with NMR-derived constraints are almost always calculated in vacuo. The solution structure of (Ca2+)2-calbindin D9k has been redetermined by new restrained molecular dynamics (MD) calculations that include Ca2+ ions and explicit solvent molecules. Four parallel sets of MD refinements were run to provide accurate comparisons of structures produced in vacuo, in vacuo with Ca2+ ions, and with two different protocols in a solvent bath with Ca2+ ions.

View Article and Find Full Text PDF

The three-dimensional solution structure of duocarmycin SA in complex with d-(G1ACTAATTGAC11).d-(G12TCATTAGTC22) has been determined by restrained molecular dynamics and relaxation matrix calculations using experimental NOE distance and torsion angle constraints derived from 1H NMR spectroscopy. The final input data consisted of a total of 858 distance and 189 dihedral angle constraints, an average of 46 constraints per residue.

View Article and Find Full Text PDF

Recombination of genes is essential to the evolution of genetic diversity, the segregation of chromosomes during cell division, and certain DNA repair processes. The Holliday junction, a four-arm, four-strand branched DNA crossover structure, is formed as a transient intermediate during genetic recombination and repair processes in the cell. The recognition and subsequent resolution of Holliday junctions into parental or recombined products appear to be critically dependent on their three-dimensional structure.

View Article and Find Full Text PDF

Current methods of determining the rotational diffusion tensors of proteins in solution by NMR spectroscopy exclusively utilize relaxation rate constants for backbone amide 15N spins. However, the distributions of orientations of N-H bond vectors are not isotropic in many proteins, and correlations between bond vector orientations reduce the accuracy and precision of rotational diffusion tensors extracted from 15N spin relaxation data. The inclusion of both 13C alpha and 15N spin relaxation rate constants increases the robustness of the diffusion tensor analysis because the orientations of the C alpha-H alpha bond vectors differ from the orientations of the N-H bond vectors.

View Article and Find Full Text PDF

The homodimeric S100 protein calcyclin has been studied in the apo state by two-dimensional 1H NMR spectroscopy. Using a combination of scalar correlation and NOE experiments, sequence-specific 1H NMR assignments were obtained for all but one backbone and > 90% of the side-chain resonances. To our knowledge, the 2 x 90 residue (20 kDa) calcyclin dimer is the largest protein system for which such complete assignments have been made by purely homonuclear methods.

View Article and Find Full Text PDF

A complex between d(GGGAAAAACGG).d(CCGTTTTTCCC) and the minor groove binding drug SN-6999 has been studied by 1H nuclear magnetic resonance spectroscopy. The drug is found to bind in the d(A)5 tract, but with interactions extending one residue in the 3'-direction along each strand.

View Article and Find Full Text PDF

A 32-base-pair model of the Holliday junction (HJ) intermediate in genetic recombination has been prepared and analyzed in-depth by 2D and 3D (1)H NMR spectroscopy. This HJ (J2P1) corresponds to a cyclic permutation of the base pairs at the junction relative to a previously studied HJ [J2; Chen, S.-M.

View Article and Find Full Text PDF

The three-dimensional solution structure of (Cd2+)1-calbindin D9k has been determined by distance geometry, restrained molecular dynamics and relaxation matrix calculations using experimental constraints obtained from two-dimensional 1H and 15N-1H NMR spectroscopy. The final input data consisted of 1055 NOE distance constraints and 71 dihedral angle constraints, corresponding to 15 constraints per residue on average. The resulting ensemble of 24 structures has no distance or dihedral angle constraints consistently violated by more than 0.

View Article and Find Full Text PDF

The S100 calcium-binding proteins are implicated as effectors in calcium-mediated signal transduction pathways. The three-dimensional structure of the S100 protein calcyclin has been determined in solution in the apo state by NMR spectroscopy and a computational strategy that incorporates a systematic docking protocol. This structure reveals a symmetric homodimeric fold that is unique among calcium-binding proteins.

View Article and Find Full Text PDF
Releasing the calcium trigger.

Nat Struct Biol

September 1995

NMR structures of calmodulin, troponin C and related proteins are providing the atomic details of the conformational changes that transduce Ca2+ signals into mechanical or metabolic responses.

View Article and Find Full Text PDF

The three-dimensional structure of apo calbindin D9k has been determined using constraints generated from nuclear magnetic resonance spectroscopy. The family of solution structures was calculated using a combination of distance geometry, restrained molecular dynamics, and hybrid relaxation matrix analysis of the nuclear Overhauser effect (NOE) cross-peak intensities. Errors and inconsistencies in the input constraints were identified using complete relaxation matrix analyses based on the results of preliminary structure calculations.

View Article and Find Full Text PDF

Calbindin D9k is a small EF-hand protein that binds two calcium ions with positive cooperativity. The molecular basis of cooperativity for the binding pathway where the first ion binds in the N-terminal site (1) is investigated by NMR experiments on the half-saturated state of the N56A mutant, which exhibits sequential yet cooperative binding (Linse S, Chazin WJ, 1995, Protein Sci 4:1038-1044). Analysis of calcium-induced changes in chemical shifts, amide proton exchange rates, and NOEs indicates that ion binding to the N-terminal binding loop causes significant changes in conformation and/or dynamics throughout the protein.

View Article and Find Full Text PDF

Positive cooperativity, defined as an enhancement of the ligand affinity at one site as a consequence of binding the same type of ligand at another site, is a free energy coupling between binding sites. It can be present both in systems with sites having identical ligand affinities and in systems where the binding sites have different affinities. When the sites have widely different affinities such that they are filled with ligand in a sequential manner, it is often difficult to quantify or even detect the positive cooperativity, if it occurs.

View Article and Find Full Text PDF

The concentration of protein in a solution has been found to have a significant effect on ion binding affinity. It is well known that an increase in ionic strength of the solvent medium by addition of salt modulates the ion-binding affinity of a charged protein due to electrostatic screening. In recent Monte Carlo simulations, a similar screening has been detected to arise from an increase in the concentration of the protein itself.

View Article and Find Full Text PDF

The nonlabile protons of two 32-base-pair models of the Holliday junction intermediate in genetic recombination have been studied by two-dimensional 1H nuclear magnetic resonance (NMR) spectroscopy. The sequence of these models is designed to fully inhibit branch migration of the junction and to probe the possible sequence dependence of these four-arm DNA structures. Overlap of resonances in homonuclear two-dimensional nuclear Overhauser enhancement (NOE) spectra necessitates the use of a multipathway approach for obtaining sequence-specific assignments, wherein all possible NOE connectivities are analyzed in parallel.

View Article and Find Full Text PDF

Caltractin is a member of the calmodulin superfamily of Ca(2+)-binding proteins that was originally cloned at the DNA level from the unicellular green alga Chlamydomonas reinhardtii. Human and mouse homologs to algal caltractin have been recently characterized. In the studies reported here, recombinant Chlamydomonas caltractin was expressed at high levels in Escherichia coli and purified to homogeneity.

View Article and Find Full Text PDF