Publications by authors named "Chazalviel L"

Article Synopsis
  • The study focused on understanding the tumor microenvironment (TME) of brain metastases (BM) from lung cancer, specifically looking at factors like hypoxia and redox state, which impact tumor growth and treatment resistance.
  • In vitro experiments showed that lung cancer cells increased certain proteins in response to low oxygen levels (hypoxia), indicating metabolic and oxidative stress changes in the tumor tissue.
  • Imaging techniques, particularly [Cu][Cu(ATSM)] PET, revealed significant differences in hypoxia levels and protein expressions between cortical and striatal brain metastases, highlighting the importance of this imaging method in tailoring treatment approaches based on tumor characteristics.
View Article and Find Full Text PDF

Purpose: Radiation therapy for brain tumors increases patient survival. Nonetheless, side effects are increasingly reported such as cognitive deficits and fatigue. The etiology of fatigue remains poorly described.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates acute ischemic stroke, focusing on distinguishing between the ischemic core and the potentially salvageable penumbra using a new MRI technique for measuring brain oxygen levels (S O -MRI).
  • The research found a strong correlation between S O -MRI signals and PET imaging of hypoxic tissues, indicating that S O -MRI can effectively identify areas at risk in stroke cases.
  • Results showed that S O -MRI could not only detect hypoxia but also predict the final extent of brain lesions, suggesting its potential as a tool for better patient treatment strategies in acute stroke scenarios.
View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) diversion by shunts is the most common surgical treatment for hydrocephalus. Though effective, shunts are associated with risk of dysfunction leading to multiple surgical revisions, affecting patient quality-of-life and incurring high healthcare costs. There is a need for ambulatory monitoring systems for life-long assessment of shunt status.

View Article and Find Full Text PDF
Article Synopsis
  • Brain metastases are common in breast cancer patients, leading to a short overall survival of around 6 months despite treatments like external beam radiotherapy (EBRT).
  • This study explores a new targeted therapy using lead-212 (212Pb) combined with an anti-VCAM-1 antibody, which effectively targets the early stages of brain metastases.
  • Results showed that 212Pb-αVCAM-1 significantly reduced tumor burden and improved overall survival by 29% compared to standard EBRT, without major toxicity observed.
View Article and Find Full Text PDF

It was previously reported that normobaric oxygen therapy (NBO) significantly affected T2-weighted imaging in a mouse model of intracerebral hemorrhage (ICH). However, it is unclear whether a similar phenomenon exists in large volume ICH as seen in human pathology. We investigated the effects of NBO on T2-weighted images in a pig model of ICH.

View Article and Find Full Text PDF

According to the OECD statistical base for 2014, anti-depressants will, on average, be distributed at a rate of 62 daily doses per 1,000 inhabitants for the 25 countries surveyed (Health at a glance: Europe 2014; OECD Health Statistics; World Health Organization and OECD Health Statistics, 2014). Divers must be concerned. On another hand, divers are potentially exposed to decompression sickness including coagulation inflammation and ischemia, which can result in neurological lesions or even death.

View Article and Find Full Text PDF

Although chronic arterial hypertension (CAH) represents the major comorbid factor in stroke, it is rarely integrated in preclinical studies of stroke. The majority of those investigations employ spontaneously hypertensive rats (SHR) which display a susceptibility to ischemic damage independent of hypertension. Here, we used a renovascular model of hypertension (RH) to examine, with magnetic resonance imaging (MRI), brain alterations during the development of hypertension and after brain ischemia.

View Article and Find Full Text PDF

Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO) = 1 atmospheres absolute (ATA) = 0.

View Article and Find Full Text PDF

Recent data have shown that normobaric oxygen (NBO) increases the catalytic and thrombolytic efficiency of recombinant tissue plasminogen activator (rtPA) , and is as efficient as rtPA at restoring cerebral blood flow in rats subjected to thromboembolic brain ischemia. Therefore, in the present study, we studied the effects of hyperbaric oxygen (HBO) (i) on rtPA-induced thrombolysis and (ii) in rats subjected to thromboembolic middle cerebral artery occlusion-induced brain ischemia. HBO increases rtPA-induced thrombolysis to a greater extent than NBO; in addition, HBO treatment of 5-minute duration, but not of 25-minute duration, reduces brain damage and edema .

View Article and Find Full Text PDF

Background: Multidetector computed tomography (MDCT) provides a non-invasive anatomic description of the coronary veins that may be useful in patients candidates to cardiac resynchronization. Prospective gating reduces radiation exposure but its impact on image quality is unknown is this setting.

Aims: This study compared image quality and reliability of MDCT angiography of the coronary veins between prospective and retrospective gating.

View Article and Find Full Text PDF

Background: The lack of a relevant stroke model in large nonhuman primates hinders the development of innovative diagnostic/therapeutic approaches concerned with this cerebrovascular disease. Our objective was to develop a novel and clinically relevant model of embolic stroke in the anesthetized monkey that incorporates readily available clinical imaging techniques and that would allow the possibility of drug delivery including strategies of reperfusion.

Methods: Thrombin was injected into the lumen of the middle cerebral artery (MCA) in 12 anesthetized (sevoflurane) male rhesus macaques (Macaca mulatta).

View Article and Find Full Text PDF

Background: The use and benefits of normobaric oxygen (NBO) in patients suffering acute ischemic stroke is still controversial.

Results: Here we show for the first time to the best of our knowledge that NBO reduces both NMDA-induced calcium influxes in vitro and NMDA-induced neuronal degeneration in vivo, but increases oxygen and glucose deprivation-induced cell injury in vitro and ischemia-induced brain damage produced by middle cerebral artery occlusion in vivo.

Conclusions: Taken together, these results indicate that NBO reduces excitotoxin-induced calcium influx and subsequent neuronal degeneration but favors ischemia-induced brain damage and neuronal death.

View Article and Find Full Text PDF

During the past decade, studies on the manipulation of various inhaled inert gases during ischemia and/or reperfusion have led to the conclusion that inert gases may be promising agents for treating acute ischemic stroke and perinatal hypoxia-ischemia insults. Although there is a general consensus that among these gases xenon is a golden standard, the possible widespread clinical use of xenon experiences major obstacles, namely its availability and cost of production. Interestingly, recent findings have shown that helium, which is a cost-efficient inert gas with no anesthetic properties, can provide neuroprotection against acute ischemic stroke in vivo when administered during ischemia and early reperfusion.

View Article and Find Full Text PDF

Distal occlusion of the middle cerebral artery (dMCAo), which closely mimics human stroke, is one of the most used animal models. However, although assessment of histological and functional outcome is increasingly recommended for preclinical studies, the latter is often excluded because of the high difficulties to estimate, especially in mice, behavioral impairments. The aim of our study was to deeply screen functional consequences of distal permanent MCAo in mice to target relevant behaviors for future studies.

View Article and Find Full Text PDF

Background And Objective: Preliminary studies have shown that nitrous oxide, like xenon, may possess potentially neuroprotective properties. However, because of its possible neurotoxic and proneurotoxic effects (obtained under particular conditions) and its bad reputation at anesthetic concentrations, no thorough investigations have been performed on the potentially neuroprotective properties of nitrous oxide. The aim of this study was to investigate the possible neuroprotective effects of nitrous oxide at nonanesthetic concentrations on different models of excitotoxic insult and brain ischemia.

View Article and Find Full Text PDF

Urotensin-II (U-II) is a cyclic peptide identified recently in many mammalian species including man. U-II and its receptor are expressed in the central nervous system, in the cardiovascular system and in other peripheral tissues. Although this peptide has been reported initially to be a potent vasoconstrictor, increasing evidence shows that its vascular actions strongly depend on species and vascular beds.

View Article and Find Full Text PDF

Brain insults are a major cause of acute mortality and chronic morbidity. Given the largely ineffective current therapeutic strategies, the development of new and efficient therapeutic interventions is clearly needed. A series of previous investigations has shown that the noble and anesthetic gas xenon, which has low-affinity antagonistic properties at the N-methyl-D-aspartate (NMDA) receptor, also exhibits potentially neuroprotective properties with no proven adverse side effects.

View Article and Find Full Text PDF

Background And Purpose: Whereas the effects of chronic arterial hypertension on the cerebral vasculature have been widely studied, its effects on brain tissue have been studied less so. Here we examined if spontaneously hypertensive rats (SHRs) or the normotensive control Wistar Kyoto rats (WKYs) made hypertensive by renal artery stenosis (R-WKYs) are vulnerable to an excitotoxic brain lesion provoked by an overactivation of glutamate receptors.

Methods: Lesion volumes were quantified by histology in WKYs and SHRs subjected to striatal administration of N-methyl-d-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA).

View Article and Find Full Text PDF

The assessment of both histological and functional long-term outcomes after cerebral ischemia is increasingly recommended for preclinical studies. Whereas correlations between behavioral impairments and primary ischemic lesion are documented, little is known about their relationships with remote nonischemic regions that undergo secondary degeneration, such as the thalamus. Anesthetized rats were subjected to mild (30 min) or severe (60 min) occlusion of the middle cerebral artery.

View Article and Find Full Text PDF

The mechanisms underlying functional recovery after stroke are poorly understood. Brain-adaptive responses to the hypoxic stress elicited by ischemia could contribute to these mechanisms. Indeed, hypoxia-inducible factor-1 (HIF-1), one of the main transcriptional factors regulated by oxygen level, increases the expression of several beneficial genes such as erythropoietin, glucose transporter-1 and vascular endothelial growth factor.

View Article and Find Full Text PDF

Mecamylamine is a well-described non specific antagonist of nicotinic acetylcholine receptors (nAChRs), used in therapy and in psychopharmacological studies. [(11)C]-Mecamylamine was prepared and evaluated as a putative radioligand for positron emission tomography to study nicotinic acetylcholine receptors. The radiosynthesis consisted in the [(11)C]-methylation of the desmethyl precursor within 40 min with 30-40% radiochemical yield decay corrected.

View Article and Find Full Text PDF

Neuronal death after ischemia-induced brain damage depends largely upon the activation of the N-methyl-D-aspartate (NMDA) excitatory glutamate receptor that is a target for many putative neuroprotective agents. Whereas the NMDA receptors mediate ischemic brain damage, blocking them is deleterious in humans. Here, the authors investigated whether nitrous oxide or xenon, which are gaseous anesthetics with a remarkably safe clinical profile that have been recently demonstrated as effective inhibitors of the NMDA receptor, may reduce the following: (1) ischemia-induced brain damage in vivo, when given after occlusion of the middle cerebral artery (MCAO), a condition needed to make these potentially neuroprotective agents therapeutically valuable; or (2) NMDA-induced Ca2+ influx in cortical cell cultures, a major critical event involved in excitotoxic neuronal death.

View Article and Find Full Text PDF

There has been an increasing interest in recent years in the evaluation of the neuronal and glial responses to ischemic insult. Some cytokines, including transforming growth factor-beta (TGF-beta), that are overexpressed after experimental stroke in rodents are thought to be implicated in the neuronal processes that lead to necrosis. Thus, such cytokines could predict tissue fate after stroke in humans, although data are currently sparse for gyrencephalic species.

View Article and Find Full Text PDF