Recent studies suggest that the therapeutic effects of stem cell transplantation following myocardial infarction (MI) are mediated by paracrine factors. One of the main goals in the treatment of ischemic heart disease is to stimulate vascular repair mechanisms. Here, we sought to explore the therapeutic angiogenic potential of mesenchymal stem cell (MSC) secretions.
View Article and Find Full Text PDFBackground: Hyaluronic acid is expressed in atherosclerotic lesions, but its exact role in atherosclerotic disease remains unknown. As degradation of hyaluronic acid by hyaluronidase into low molecular weight hyaluronic acid (LMW-HA) is associated with inflammation and Matrix Metalloproteinase (MMP)-9 activity, we hypothesized that hyaluronic acid metabolism is increased in plaques with unstable characteristics like large lipid core, high number of macrophages, MMP-9 activity, low collagen and smooth muscle cell content.
Materials And Methods: Protein was isolated from 68 carotid artery specimens.
Background: Cyclooxygenase (COX)-2 expression in the heart increases after myocardial infarction (MI). In murine models of MI, COX-2 inhibition preserves left ventricular dimensions and function. We studied the effect of selective COX-2 inhibition on left ventricular remodeling and function after MI in a pig model.
View Article and Find Full Text PDFBackground And Purpose: We studied matrix metalloproteinases (MMP) 2, 8, and 9 and extracellular matrix metalloproteinase inducer (EMMPRIN) levels in relation to carotid atherosclerotic plaque characteristics.
Methods: Carotid atherosclerotic plaques (n=150) were stained and analyzed for the presence of collagen, smooth muscle cell (SMC), and macrophages. Adjacent segments were used to isolate total protein to assess MMP-2 and MMP-9 activities and gelatin breakdown, MMP-8 activity, and EMMPRIN levels.
Aims: Plaque rupture has been associated with a high matrix metalloproteinase (MMP) activity. Recently, regional temperature variations have been observed in atherosclerotic plaques in vivo and ascribed to the presence of macrophages. As macrophages are a major source of MMPs, we examined whether regional temperature changes are related to local MMP activity and macrophage accumulation.
View Article and Find Full Text PDFBackground: Toll-like receptor 4 (Tlr4) is the receptor for exogenous lipopolysaccharides (LPS). Expression of endogenous Tlr4 ligands, heat shock protein 60 (Hsp60) and extra domain A of fibronectin, has been observed in arthritic and oncological specimens in which matrix turnover is an important feature. In atherosclerosis, outward remodeling is characterized by matrix turnover and a structural change in arterial circumference and is associated with a vulnerable plaque phenotype.
View Article and Find Full Text PDFBackground: In vivo detection of vulnerable plaques is presently limited by a lack of diagnostic tools. Intravascular ultrasound elastography is a new technique based on intravascular ultrasound and has the potential to differentiate between different plaques phenotypes. However, the predictive value of intravascular elastography to detect vulnerable plaques had not been studied.
View Article and Find Full Text PDFBackground: Intravascular ultrasound elastography assesses the local strain of the atherosclerotic vessel wall. In the present study, the potential to identify different plaque components in vivo was investigated.
Methods And Results: Atherosclerotic external iliac and femoral arteries (n=24) of 6 Yucatan pigs were investigated.