Louping ill virus (LIV) is a tick-borne flavivirus that predominantly causes disease in livestock, especially sheep in the British Isles. A preventive vaccine, previously approved for veterinary use but now discontinued, was based on an inactivated whole virion that likely provided protection by induction of neutralizing antibodies recognizing the viral envelope (E) protein. A major disadvantage of the inactivated vaccine was the need for high containment facilities for the propagation of infectious virus, as mandated by the hazard group 3 status of the virus.
View Article and Find Full Text PDFBackground: Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants emerged globally during the recent coronavirus disease (COVID-19) pandemic. From April 2020 to April 2021, Thailand experienced three COVID-19 waves, and each wave was driven by different variants. Therefore, we aimed to analyze the genetic diversity of circulating SARS-CoV-2 using whole-genome sequencing analysis.
View Article and Find Full Text PDFThe primary route of Zika virus (ZIKV) transmission is through the bite of an infected mosquito, when it probes the skin of a vertebrate host during a blood meal. Viral particles are injected into the bite site together with mosquito saliva and a complex mixture of other components. Some of them are known to play a key role in the augmentation of the arbovirus infection in the host, with increased viremia and/or morbidity.
View Article and Find Full Text PDFZika virus (ZIKV) envelope (E) protein is the major target of neutralizing antibodies in infected hosts and thus represents a candidate of interest for vaccine design. However, a major concern in the development of vaccines against ZIKV and the related dengue virus is the induction of cross-reactive poorly neutralizing antibodies that can cause antibody-dependent enhancement (ADE) of infection. This risk necessitates particular care in vaccine design.
View Article and Find Full Text PDFYellow fever virus (YFV), a member of the Flaviviridae family, is an arthropod-borne virus that can cause severe disease in humans with a lethality rate of up to 60%. Since 2017, increases in YFV activity in areas of South America and Africa have been described. Although a vaccine is available, named strain 17D (Theiler and Smith, 1937), it is contraindicated for use in the elderly, expectant mothers, immunocompromised people, among others.
View Article and Find Full Text PDFApoptosis mediated by Fas/FasL has been implicated in pulmonary disorders. However, little is known about the relationship between Fas and FasL in the process of lung injury during malaria infection. Paraffin-embedded lung tissues from malaria patients were divided into two groups: those with pulmonary edema (PE) and those without pulmonary edema (non-PE).
View Article and Find Full Text PDFSoutheast Asian J Trop Med Public Health
September 2014
The immune responses against Plasmodiumfalciparum malaria infections are complex and poorly understood. No published studies have yet reported the lymphocyte subsets involved in the human liver tissue of P. falciparum malaria patients.
View Article and Find Full Text PDFThe immune response to dengue virus (DENV) infection generates high levels of antibodies (Abs) against the DENV non-structural protein 1 (NS1), particularly in cases of secondary infection. Therefore, anti-NS1 Abs may play a role in severe dengue infections, possibly by interacting (directly or indirectly) with host factors or regulating virus production. If it does play a role, NS1 may contain epitopes that mimic those epitopes of host molecules.
View Article and Find Full Text PDFBackground: Hybridomas that produce human monoclonal antibodies (HuMAbs) against Dengue virus (DV) had been prepared previously using peripheral blood lymphocytes from patients with DV during the acute and convalescent phases of a secondary infection. Anti-DV envelope glycoprotein (E) 99 clones, anti-DV premembrane protein (prM) 8 clones, and anti-DV nonstructural protein 1 (NS1) 4 clones were derived from four acute-phase patients, and anti-DV E 2 clones, anti-DV prM 2 clones, and anti-DV NS1 8 clones were derived from five convalescent-phase patients.
Methods And Results: In the present study, we examined whether these clones cross-reacted with Japanese encephalitis virus (JEV), which belongs to the same virus family.
Public health concern about dengue diseases, caused by mosquito-borne infections with four serotypes of dengue virus (DENV-1-DENV-4), is escalating in tropical and subtropical countries. Most of the severe dengue cases occur in patients experiencing a secondary infection with a serotype that is different from the first infection. This is believed to be due to antibody-dependent enhancement (ADE), by which one DENV serotype uses pre-existing anti-DENV antibodies elicited in the primary infection to facilitate entry of a different DENV serotype into the Fc receptor-positive macrophages.
View Article and Find Full Text PDFBackground: Dengue illness is one of the important mosquito-borne viral diseases in tropical and subtropical regions. Four serotypes of dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4) are classified in the Flavivirus genus of the family Flaviviridae. We prepared monoclonal antibodies against DENV capsid protein from mice immunized with DENV-2 and determined the cross-reactivity with each serotype of DENV and Japanese encephalitis virus.
View Article and Find Full Text PDFThe global spread of the four dengue virus serotypes (DENV-1 to -4) has made this virus a major and growing public health concern. Generally, pre-existing neutralizing antibodies derived from primary infection play a significant role in protecting against subsequent infection with the same serotype. By contrast, these pre-existing antibodies are believed to mediate a non-protective response to subsequent heterotypic DENV infections, leading to the onset of dengue illness.
View Article and Find Full Text PDF