Recent quantum algorithms pertaining to electronic structure theory primarily focus on the threshold-based dynamic construction of ansatz by selectively including important many-body operators. These methods can be made systematically more accurate by tuning the threshold to include a greater number of operators into the ansatz. However, such improvements come at the cost of rapid proliferation of the circuit depth, especially for highly correlated molecular systems.
View Article and Find Full Text PDFQuantum computers hold immense potential in the field of chemistry, ushering new frontiers to solve complex many-body problems that are beyond the reach of classical computers. However, noise in the current quantum hardware limits their applicability to large chemical systems. This work encompasses the development of a projective formalism that aims to compute ground-state energies of molecular systems accurately using noisy intermediate scale quantum (NISQ) hardware in a resource-efficient manner.
View Article and Find Full Text PDFIn recent times, a variety of hybrid quantum-classical algorithms have been developed that aim to calculate the ground state energies of molecular systems on Noisy Intermediate-Scale Quantum (NISQ) devices. Albeit the utilization of shallow depth circuits in these algorithms, the optimization of ansatz parameters necessitates a substantial number of quantum measurements, leading to prolonged runtimes on the scantly available quantum hardware. Through our work, we lay the general foundation for an interdisciplinary approach that can be used to drastically reduce the dependency of these algorithms on quantum infrastructure.
View Article and Find Full Text PDFThe coupled cluster iteration scheme for determining the cluster amplitudes involves a set of nonlinearly coupled difference equations. In the space spanned by the amplitudes, the set of equations are analyzed as a multivariate time-discrete map where the concept of time appears in an implicit manner. With the observation that the cluster amplitudes have difference in their relaxation timescales with respect to the distributions of their magnitudes, the coupled cluster iteration dynamics are considered as a synergistic motion of coexisting slow and fast relaxing modes, manifesting a dynamical hierarchical structure.
View Article and Find Full Text PDFNanozymes are defined as nanomaterials exhibiting enzyme-like properties, and they possess both catalytic functions and nanomaterial's unique physicochemical characteristics. Due to the excellent stability and improved catalytic activity in comparison to natural enzymes, nanozymes have established a wide base for applications in environmental pollutants monitoring and remediation. Nanozymes have been applied in the detection of heavy metal ions, molecules, and organic compounds, both quantitatively and qualitatively.
View Article and Find Full Text PDF