Bacteria use the type VI secretion system (T6SS) to deliver toxic effectors into bacterial or eukaryotic cells during interbacterial competition, host colonization, or when resisting predation. Identifying effectors is a challenging task, as they lack canonical secretion signals or universally conserved domains. Here, we identify a protein domain, RIX, that defines a class of polymorphic T6SS cargo effectors.
View Article and Find Full Text PDFType VI secretion systems (T6SSs) play a major role in interbacterial competition and in bacterial interactions with eukaryotic cells. The distribution of T6SSs and the effectors they secrete vary between strains of the same bacterial species. Therefore, a pan-genome investigation is required to better understand the T6SS potential of a bacterial species of interest.
View Article and Find Full Text PDFThe type VI secretion system (T6SS) is used by bacteria to deliver toxic effectors directly into target cells. Most T6SSs mediate antibacterial activities, whereas the potential anti-eukaryotic role of T6SS remains understudied. Here, we found a T6SS that delivers two novel effectors into mammalian host immune cells.
View Article and Find Full Text PDFGram-negative bacteria often employ the type VI secretion system (T6SS) to deliver diverse cocktails of antibacterial effectors into rival bacteria. In many cases, even when the identity of the delivered effectors is known, their toxic activity and mechanism of secretion are not. Here, we investigate VPA1263, a Vibrio parahaemolyticus T6SS effector that belongs to a widespread class of polymorphic effectors containing a MIX domain.
View Article and Find Full Text PDF