Disentangling Second Harmonic Generation (SHG) and Multiphoton Excited Photoluminescence (MEPL) signals in microscopy experiments is not an easy task. Two methods have been so far proposed based either on a time domain or a spectral domain analysis of the collected signals. In this report, a new method based on polarization discrimination is proposed to separate these SHG and MEPL contributions.
View Article and Find Full Text PDFThe doping of magnesium on lithium aluminium borate phosphor is reported in this study. A solid-state sintering technique was employed as the borate samples were synthesized. This report focuses on the structural, optical, thermoluminescence, and kinetic analyses of the main glow peak.
View Article and Find Full Text PDFMicromachines (Basel)
September 2022
In this work, we present a new study on the electromagnetic (EM) enhancement properties generated by Ag/TiO toward the finger print of methylene blue (MB) molecules deposited on the surface of Ag nanostructures. SERS intensity generated by MB molecules reflects the interaction between the local electric field and their bonds. A power-dependent SERS study in order to reveal the magnitude effect of a local electric field on the vibration behavior of molecular bonds of MB was performed.
View Article and Find Full Text PDFIn this work, we report a new approach for detecting SARS-CoV-2 RBD protein (RBD) using the surface-enhanced Raman spectroscopy (SERS) technique. The optical enhancement was obtained thanks to the preparation of nanostructured Ag/Au substrates. Fabricated Au/Ag nanostructures were used in the SERS experiment for RBD protein detection.
View Article and Find Full Text PDFWe report for the first time kinetic studies on chromium(III) detection in aqueous solution using citrate-capped silver nanoparticles (AgNPs) and the surface-enhanced Raman spectroscopy (SERS) technique. Moreover, we have shown an important effect of adding ethylenediaminetetraacetic acid (EDTA) on the enhancement and the stability of the Raman signal. The origin of the SERS signal was attributed to the coordination of Cr(III) by citrate/EDTA molecules and the formation of hot spots on aggregated AgNPs.
View Article and Find Full Text PDFIn this work, we apply surface-enhanced Raman spectroscopy (SERS) to study the kinetics of chromium Cr (III) detection in solution using EDTA and silver nanoparticles (AgNPs). We examine for the first time the effect of pH and nanoparticles' capping agent on the kinetic mechanism of Cr (III) detection using SERS temporal variations. The full width at half maximum (FWHM) and Raman shift variations show that the mechanism of detection is composed of two steps: a first one consisting of chemical coordination between Cr (III) and AgNPs that leads to exalted chemical and electromagnetic enhancement and the second one is an aggregation process with an important optical enhancement.
View Article and Find Full Text PDFNanocomposite films grown by incorporating varying concentrations of Yttrium, a d-block rare-earth ion, into the binary chalcogenide Arsenic selenide host matrix is here presented. Films were grown via the wet-chemical electro-deposition technique and characterized for structural, optical, surface morphology, and photoluminescence (PL) properties. The X-ray Diffraction (XRD) result of the host matrix (pristine film) showed films of monoclinic structure with an average grain size of 36.
View Article and Find Full Text PDFIn this work, flower-like ZnO nanorods (NRs) were successfully prepared using microwave-assisted techniques at a low temperature. The synthesized NRs exhibited a smooth surface and good crystal structure phase of ZnO. The sharp peak of the XRD and Raman spectrum confirmed the high crystallinity of these ZnO NRs with a pure wurtzite structure.
View Article and Find Full Text PDFIn this study, high specific surface areas (SSAs) of anatase titanium dioxide (TiO) quantum dots (QDs) were successfully synthesized through a novel one-step microwave-hydrothermal method in rapid synthesis time (20 min) without further heat treatment. XRD analysis and HR-TEM images showed that the as-prepared TiO QDs of approximately 2 nm size have high crystallinity with anatase phase. Optical properties showed that the energy band gap ( ) of as-prepared TiO QDs was 3.
View Article and Find Full Text PDFWe study the propagation properties of surface plasmon polaritons on a Cu surface by means of photoemission electron microscopy. Use of a CMOS process to fabricate the Cu thin film is shown to enable very high propagation distances (up to 65 μm at 750 nm wavelength), provided that the copper native oxide is removed. A critical review of the optical loss mechanisms is undertaken and shed light on the effect of single grain boundaries in increasing the propagation losses of the plasmon.
View Article and Find Full Text PDF